Do you want to publish a course? Click here

Antiferromagnetic spin correlations and pseudogap-like behavior in Ca(Fe1-xCox)2As2 studied by 75As nuclear magnetic resonance and anisotropic resistivity

100   0   0.0 ( 0 )
 Added by Yuji Furukawa
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report $^{75}$As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ ($x$ = 0.023, 0.028, 0.033, and 0.059) annealed at 350~$^{circ}$C for 7 days. From the observation of a characteristic shape of $^{75}$As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of $x$ = 0 ($T_{rm N}$ = 170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in $x$ = 0.023 ($T_{rm N}$ = 106 K) and $x$ = 0.028 ($T_{rm N}$ = 53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/$T_1$), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as in the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature $T^*$ which was nearly independent of Co-substitution concentration, and is attributed to a pseudogap-like behavior in the spin excitation spectra of these systems. The $T^*$ feature finds correlation with features in the temperature-dependent inter-plane resistivity, $rho_c(T)$, but not with the in-plane resistivity $rho _a (T)$. The temperature evolution of anisotropic stripe-type AFM spin fluctuations are tracked in the paramagnetic and pseudogap phases by the 1/$T_1$ data measured under magnetic fields parallel and perpendicular to the $c$ axis. Based on our NMR data, we have added a pseudogap-like phase to the magnetic and electronic phase diagram of Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$.



rate research

Read More

168 - J. Cui , P. Wiecki , S. Ran 2016
Recent nuclear magnetic resonance (NMR) measurements revealed the coexistence of stripe-type antiferromagnetic (AFM) and ferromagnetic (FM) spin correlations in both the hole- and electron-doped BaFe$_2$As$_2$ families of iron-pnictide superconductors by a Korringa ratio analysis. Motivated by the NMR work, we investigate the possible existence of FM fluctuations in another iron pnictide superconducting family, Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$. We re-analyzed our previously reported data in terms of the Korringa ratio and found clear evidence for the coexistence of stripe-type AFM and FM spin correlations in the electron-doped CaFe$_2$As$_2$ system. These NMR data indicate that FM fluctuations exist in general in iron-pnictide superconducting families and thus must be included to capture the phenomenology of the iron pnictides.
Inelastic neutron scattering measurements have been performed on underdoped Ba(Fe1-xCox)2As2 (x = 4.7%) where superconductivity and long-range antiferromagnetic (AFM) order coexist. The broad magnetic spectrum found in the normal state develops into a magnetic resonance feature below TC that has appreciable dispersion along c-axis with a bandwidth of 3-4 meV. This is in contrast to the optimally doped x = 8.0% composition, with no long-range AFM order, where the resonance exhibits a much weaker dispersion [see Lumsden et al. Phys. Rev. Lett. 102, 107005 (2009)]. The results suggest that the resonance dispersion arises from interlayer spin correlations present in the AFM ordered state.
Iron-based high temperature superconductivity develops when the `parent antiferromagnetic/orthorhombic phase is suppressed, typically by introduction of dopant atoms. But their impact on atomic-scale electronic structure, while in theory quite complex, is unknown experimentally. What is known is that a strong transport anisotropy with its resistivity maximum along the crystal b-axis, develops with increasing concentration of dopant atoms; this `nematicity vanishes when the `parent phase disappears near the maximum superconducting Tc. The interplay between the electronic structure surrounding each dopant atom, quasiparticle scattering therefrom, and the transport nematicity has therefore become a pivotal focus of research into these materials. Here, by directly visualizing the atomic-scale electronic structure, we show that substituting Co for Fe atoms in underdoped Ca(Fe1-xCox)2As2 generates a dense population of identical anisotropic impurity states. Each is ~8 Fe-Fe unit cells in length, and all are distributed randomly but aligned with the antiferromagnetic a-axis. By imaging their surrounding interference patterns, we further demonstrate that these impurity states scatter quasiparticles in a highly anisotropic manner, with the maximum scattering rate concentrated along the b-axis. These data provide direct support for the recent proposals that it is primarily anisotropic scattering by dopant-induced impurity states that generates the transport nematicity; they also yield simple explanations for the enhancement of the nematicity proportional to the dopant density and for the occurrence of the highest resistivity along the b-axis.
We report muon spin rotation ($mu$SR) measurements of single crystal Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$. From measurements of the magnetic field penetration depth $lambda$ we find that for optimally- and over-doped samples, $1/lambda(Tto 0)^2$ varies monotonically with the superconducting transition temperature T$_{rm C}$. Within the superconducting state we observe a positive shift in the muon precession signal, likely indicating that the applied field induces an internal magnetic field. The size of the induced field decreases with increasing doping but is present for all Co concentrations studied.
We investigate the nature of the SDW (Spin Density Wave) transition in the underdoped regime of an iron-based high Tc superconductor Ba(Fe1-xCox)2As2 by 75As NMR, with primary focus on a composition with x = 0.02 (T_SDW = 99 K).We demonstrate that critical slowing down toward the three dimensional SDW transition sets in at the tetragonal to orthorhombic structural phase transition, Ts = 105 K, suggesting strong interplay between structural distortion and spin correlations. In the critical regime between Ts and T_SDW, the dynamical structure factor of electron spins S(q,Wn) measured with the longitudinal NMR relaxation rate 1/T1 exhibits a divergent behavior obeying a power law, 1/T1~S(q, Wn)~(T/T_SDW-1)^a with the critical exponent a ~ 0.33.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا