Do you want to publish a course? Click here

A method to reduce the rejection rate in Monte Carlo Markov Chains

330   0   0.0 ( 0 )
 Added by Carlo Baldassi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a method for Monte Carlo sampling on systems with discrete variables (focusing in the Ising case), introducing a prior on the candidate moves in a Metropolis-Hastings scheme which can significantly reduce the rejection rate, called the reduced-rejection-rate (RRR) method. The method employs same probability distribution for the choice of the moves as rejection-free schemes such as the method proposed by Bortz, Kalos and Lebowitz (BKL) [Bortz et al. J.Comput.Phys. 1975]; however, it uses it as a prior in an otherwise standard Metropolis scheme: it is thus not fully rejection-free, but in a wide range of scenarios it is nearly so. This allows to extend the method to cases for which rejection-free schemes become inefficient, in particular when the graph connectivity is not sparse, but the energy can nevertheless be expressed as a sum of two components, one of which is computed on a sparse graph and dominates the measure. As examples of such instances, we demonstrate that the method yields excellent results when performing Monte Carlo simulations of quantum spin models in presence of a transverse field in the Suzuki-Trotter formalism, and when exploring the so-called robust ensemble which was recently introduced in Baldassi et al. [PNAS 2016]. Our code for the Ising case is publicly available [https://github.com/carlobaldassi/RRRMC.jl], and extensible to user-defined models: it provides efficient implementations of standard Metropolis, the RRR method, the BKL method (extended to the case of continuous energy specra), and the waiting time method [Dall and Sibani Comput.Phys.Commun. 2001].



rate research

Read More

120 - N.B. Wilding 2003
The inverse problem for a disordered system involves determining the interparticle interaction parameters consistent with a given set of experimental data. Recently, Rutledge has shown (Phys. Rev. E63, 021111 (2001)) that such problems can be generally expressed in terms of a grand canonical ensemble of polydisperse particles. Within this framework, one identifies a polydisperse attribute (`pseudo-species) $sigma$ corresponding to some appropriate generalized coordinate of the system to hand. Associated with this attribute is a composition distribution $barrho(sigma)$ measuring the number of particles of each species. Its form is controlled by a conjugate chemical potential distribution $mu(sigma)$ which plays the role of the requisite interparticle interaction potential. Simulation approaches to the inverse problem involve determining the form of $mu(sigma)$ for which $barrho(sigma)$ matches the available experimental data. The difficulty in doing so is that $mu(sigma)$ is (in general) an unknown {em functional} of $barrho(sigma)$ and must therefore be found by iteration. At high particle densities and for high degrees of polydispersity, strong cross coupling between $mu(sigma)$ and $barrho(sigma)$ renders this process computationally problematic and laborious. Here we describe an efficient and robust {em non-equilibrium} simulation scheme for finding the equilibrium form of $mu[barrho(sigma)]$. The utility of the method is demonstrated by calculating the chemical potential distribution conjugate to a specific log-normal distribution of particle sizes in a polydisperse fluid.
The cavity method is a well established technique for solving classical spin models on sparse random graphs (mean-field models with finite connectivity). Laumann et al. [arXiv:0706.4391] proposed recently an extension of this method to quantum spin-1/2 models in a transverse field, using a discretized Suzuki-Trotter imaginary time formalism. Here we show how to take analytically the continuous imaginary time limit. Our main technical contribution is an explicit procedure to generate the spin trajectories in a path integral representation of the imaginary time dynamics. As a side result we also show how this procedure can be used in simple heat-bath like Monte Carlo simulations of generic quantum spin models. The replica symmetric continuous time quantum cavity method is formulated for a wide class of models, and applied as a simple example on the Bethe lattice ferromagnet in a transverse field. The results of the methods are confronted with various approximation schemes in this particular case. On this system we performed quantum Monte Carlo simulations that confirm the exactness of the cavity method in the thermodynamic limit.
Population annealing is a recent addition to the arsenal of the practitioner in computer simulations in statistical physics and beyond that is found to deal well with systems with complex free-energy landscapes. Above all else, it promises to deliver unrivaled parallel scaling qualities, being suitable for parallel machines of the biggest calibre. Here we study population annealing using as the main example the two-dimensional Ising model which allows for particularly clean comparisons due to the available exact results and the wealth of published simulational studies employing other approaches. We analyze in depth the accuracy and precision of the method, highlighting its relation to older techniques such as simulated annealing and thermodynamic integration. We introduce intrinsic approaches for the analysis of statistical and systematic errors, and provide a detailed picture of the dependence of such errors on the simulation parameters. The results are benchmarked against canonical and parallel tempering simulations.
We propose a minimal generalization of the celebrated Markov-Chain Monte Carlo algorithm which allows for an arbitrary number of configurations to be visited at every Monte Carlo step. This is advantageous when a parallel computing machine is available, or when many biased configurations can be evaluated at little additional computational cost. As an example of the former case, we report a significant reduction of the thermalization time for the paradigmatic Sherrington-Kirkpatrick spin-glass model. For the latter case, we show that, by leveraging on the exponential number of biased configurations automatically computed by Diagrammatic Monte Carlo, we can speed up computations in the Fermi-Hubbard model by two orders of magnitude.
The diagrammatic Monte Carlo (Diag-MC) method is a numerical technique which samples the entire diagrammatic series of the Greens function in quantum many-body systems. In this work, we incorporate the flat histogram principle in the diagrammatic Monte method and we term the improved version Flat Histogram Diagrammatic Monte Carlo method. We demonstrate the superiority of the method over the standard Diag-MC in extracting the long-imaginary-time behavior of the Greens function, without incorporating any a priori knowledge about this function, by applying the technique to the polaron problem
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا