Do you want to publish a course? Click here

On the path integral representation for quantum spin models and its application to the quantum cavity method and to Monte Carlo simulations

255   0   0.0 ( 0 )
 Added by Francesco Zamponi
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cavity method is a well established technique for solving classical spin models on sparse random graphs (mean-field models with finite connectivity). Laumann et al. [arXiv:0706.4391] proposed recently an extension of this method to quantum spin-1/2 models in a transverse field, using a discretized Suzuki-Trotter imaginary time formalism. Here we show how to take analytically the continuous imaginary time limit. Our main technical contribution is an explicit procedure to generate the spin trajectories in a path integral representation of the imaginary time dynamics. As a side result we also show how this procedure can be used in simple heat-bath like Monte Carlo simulations of generic quantum spin models. The replica symmetric continuous time quantum cavity method is formulated for a wide class of models, and applied as a simple example on the Bethe lattice ferromagnet in a transverse field. The results of the methods are confronted with various approximation schemes in this particular case. On this system we performed quantum Monte Carlo simulations that confirm the exactness of the cavity method in the thermodynamic limit.



rate research

Read More

Quantum Monte Carlo simulations, while being efficient for bosons, suffer from the negative sign problem when applied to fermions - causing an exponential increase of the computing time with the number of particles. A polynomial time solution to the sign problem is highly desired since it would provide an unbiased and numerically exact method to simulate correlated quantum systems. Here we show, that such a solution is almost certainly unattainable by proving that the sign problem is NP-hard, implying that a generic solution of the sign problem would also solve all problems in the complexity class NP (nondeterministic polynomial) in polynomial time.
329 - Carlo Baldassi 2016
We present a method for Monte Carlo sampling on systems with discrete variables (focusing in the Ising case), introducing a prior on the candidate moves in a Metropolis-Hastings scheme which can significantly reduce the rejection rate, called the reduced-rejection-rate (RRR) method. The method employs same probability distribution for the choice of the moves as rejection-free schemes such as the method proposed by Bortz, Kalos and Lebowitz (BKL) [Bortz et al. J.Comput.Phys. 1975]; however, it uses it as a prior in an otherwise standard Metropolis scheme: it is thus not fully rejection-free, but in a wide range of scenarios it is nearly so. This allows to extend the method to cases for which rejection-free schemes become inefficient, in particular when the graph connectivity is not sparse, but the energy can nevertheless be expressed as a sum of two components, one of which is computed on a sparse graph and dominates the measure. As examples of such instances, we demonstrate that the method yields excellent results when performing Monte Carlo simulations of quantum spin models in presence of a transverse field in the Suzuki-Trotter formalism, and when exploring the so-called robust ensemble which was recently introduced in Baldassi et al. [PNAS 2016]. Our code for the Ising case is publicly available [https://github.com/carlobaldassi/RRRMC.jl], and extensible to user-defined models: it provides efficient implementations of standard Metropolis, the RRR method, the BKL method (extended to the case of continuous energy specra), and the waiting time method [Dall and Sibani Comput.Phys.Commun. 2001].
74 - Adith Ramamurti 2019
We detail the use of simple machine learning algorithms to determine the critical Bose-Einstein condensation (BEC) critical temperature $T_text{c}$ from ensembles of paths created by path-integral Monte Carlo (PIMC) simulations. We quickly overview critical temperature analysis methods from literature, and then compare the results of simple machine learning algorithm analyses with these prior-published methods for one-component Coulomb Bose gases and liquid $^4$He, showing good agreement.
84 - Mamikon Gulian , Haobo Yang , 2017
Fractional derivatives are nonlocal differential operators of real order that often appear in models of anomalous diffusion and a variety of nonlocal phenomena. Recently, a version of the Schrodinger Equation containing a fractional Laplacian has been proposed. In this work, we develop a Fractional Path Integral Monte Carlo algorithm that can be used to study the finite temperature behavior of the time-independent Fractional Schrodinger Equation for a variety of potentials. In so doing, we derive an analytic form for the finite temperature fractional free particle density matrix and demonstrate how it can be sampled to acquire new sets of particle positions. We employ this algorithm to simulate both the free particle and $^{4}$He (Aziz) Hamiltonians. We find that the fractional Laplacian strongly encourages particle delocalization, even in the presence of interactions, suggesting that fractional Hamiltonians may manifest atypical forms of condensation. Our work opens the door to studying fractional Hamiltonians with arbitrarily complex potentials that escape analytical solutions.
Population annealing is a recent addition to the arsenal of the practitioner in computer simulations in statistical physics and beyond that is found to deal well with systems with complex free-energy landscapes. Above all else, it promises to deliver unrivaled parallel scaling qualities, being suitable for parallel machines of the biggest calibre. Here we study population annealing using as the main example the two-dimensional Ising model which allows for particularly clean comparisons due to the available exact results and the wealth of published simulational studies employing other approaches. We analyze in depth the accuracy and precision of the method, highlighting its relation to older techniques such as simulated annealing and thermodynamic integration. We introduce intrinsic approaches for the analysis of statistical and systematic errors, and provide a detailed picture of the dependence of such errors on the simulation parameters. The results are benchmarked against canonical and parallel tempering simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا