Do you want to publish a course? Click here

Flat histogram diagrammatic Monte Carlo method

316   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The diagrammatic Monte Carlo (Diag-MC) method is a numerical technique which samples the entire diagrammatic series of the Greens function in quantum many-body systems. In this work, we incorporate the flat histogram principle in the diagrammatic Monte method and we term the improved version Flat Histogram Diagrammatic Monte Carlo method. We demonstrate the superiority of the method over the standard Diag-MC in extracting the long-imaginary-time behavior of the Greens function, without incorporating any a priori knowledge about this function, by applying the technique to the polaron problem



rate research

Read More

95 - M. E. J. Newman 1998
We examine the sources of error in the histogram reweighting method for Monte Carlo data analysis. We demonstrate that, in addition to the standard statistical error which has been studied elsewhere, there are two other sources of error, one arising through correlations in the reweighted samples, and one arising from the finite range of energies sampled by a simulation of finite length. We demonstrate that while the former correction is usually negligible by comparison with statistical fluctuations, the latter may not be, and give criteria for judging the range of validity of histogram extrapolations based on the size of this latter correction.
We study the performance of Monte Carlo simulations that sample a broad histogram in energy by determining the mean first-passage time to span the entire energy space of d-dimensional ferromagnetic Ising/Potts models. We first show that flat-histogram Monte Carlo methods with single-spin flip updates such as the Wang-Landau algorithm or the multicanonical method perform sub-optimally in comparison to an unbiased Markovian random walk in energy space. For the d=1,2,3 Ising model, the mean first-passage time tau scales with the number of spins N=L^d as tau propto N^2L^z. The critical exponent z is found to decrease as the dimensionality d is increased. In the mean-field limit of infinite dimensions we find that z vanishes up to logarithmic corrections. We then demonstrate how the slowdown characterized by z>0 for finite d can be overcome by two complementary approaches - cluster dynamics in connection with Wang-Landau sampling and the recently developed ensemble optimization technique. Both approaches are found to improve the random walk in energy space so that tau propto N^2 up to logarithmic corrections for the d=1 and d=2 Ising model.
The fidelity susceptibility is a general purpose probe of phase transitions. With its origin in quantum information and in the differential geometry perspective of quantum states, the fidelity susceptibility can indicate the presence of a phase transition without prior knowledge of the local order parameter, as well as reveal the universal properties of a critical point. The wide applicability of the fidelity susceptibility to quantum many-body systems is, however, hindered by the limited computational tools to evaluate it. We present a generic, efficient, and elegant approach to compute the fidelity susceptibility of correlated fermions, bosons, and quantum spin systems in a broad range of quantum Monte Carlo methods. It can be applied both to the ground-state and non-zero temperature cases. The Monte Carlo estimator has a simple yet universal form, which can be efficiently evaluated in simulations. We demonstrate the power of this approach with applications to the Bose-Hubbard model, the spin-$1/2$ XXZ model, and use it to examine the hypothetical intermediate spin-liquid phase in the Hubbard model on the honeycomb lattice.
Population annealing is a recent addition to the arsenal of the practitioner in computer simulations in statistical physics and beyond that is found to deal well with systems with complex free-energy landscapes. Above all else, it promises to deliver unrivaled parallel scaling qualities, being suitable for parallel machines of the biggest calibre. Here we study population annealing using as the main example the two-dimensional Ising model which allows for particularly clean comparisons due to the available exact results and the wealth of published simulational studies employing other approaches. We analyze in depth the accuracy and precision of the method, highlighting its relation to older techniques such as simulated annealing and thermodynamic integration. We introduce intrinsic approaches for the analysis of statistical and systematic errors, and provide a detailed picture of the dependence of such errors on the simulation parameters. The results are benchmarked against canonical and parallel tempering simulations.
The Quantum Monte Carlo (QMC) method can yield the imaginary-time dependence of a correlation function $C(tau)$ of an operator $hat O$. The analytic continuation to real-time proceeds by means of a numerical inversion of these data to find the response function or spectral density $A(omega)$ corresponding to $hat O$. Such a technique is very sensitive to the statistical errors in $C(tau)$ especially for large values of $tau$, when we are interested in the low-energy excitations. In this paper, we find that if we use the flat histogram technique in the QMC method, in such a way to make the {it histogram of} $C(tau)$ flat, the results of the analytic continuation for low-energy excitations improve using the same amount of computational time. To demonstrate the idea we select an exactly soluble version of the single-hole motion in the $t-J$ model and the diagrammatic Monte Carlo technique.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا