Do you want to publish a course? Click here

Comparison of Yields of neutron rich nuclei in Proton and Photon induced $^{238}$U fission

57   0   0.0 ( 0 )
 Added by D. N. Basu
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

A comparative study of fission of actinides specially $^{238}$U, by proton and bremsstrahlung photon is performed. Relative mass distribution of $^{238}$U fission fragments have been explored theoretically for both proton and photon induced fission. The integrated yield along with charge distribution of the products are calculated to find out the neutron richness in comparison to the nuclei produced by r-process in nucleosynthesis. Some r-process nuclei in intermediate mass range for symmetric fission mode are found to be produced almost two order of magnitude more for proton induced fission than photofission, although rest of the neutron rich nuclei in the asymmetric mode are produced in comparable proportion for both the processes.



rate research

Read More

170 - F. Minato , K. Hagino 2008
We discuss the sensitivity of fission barrier for heavy neutron-rich nuclei to fission paths in the two dimensional neutron-proton quadrupole plane. To this end, we use the constrained Skyrme-Hartree-Fock + BCS method, and examine the difference of fission barriers obtained with three constraining operators, that is, the neutron, proton, and mass quadrupole operators. We investigate $^{220}$U, $^{236}$U, and $^{266}$U, %from proton-rich to neutron-rich uranium isotopes, that is relevant to r-process nucleosynthesis. We find that the fission barrier heights are almost the same among the three constraining operators even for neutron-rich nuclei, indicating that the usual way to calculate fission barriers with the mass quadrupole operator is well justified. We also discuss the difference between proton and neutron deformation parameters along the fission paths.
The production cross sections for primary and residual fragments with charge number from $Z$=70 to 120 produced in the collision of $^{238}$U+$^{238}$U at 7.0 MeV/nucleon are calculated by the improved quantum molecular dynamics (ImQMD) model incorporated with the statistical evaporation model (HIVAP code). The calculation results predict that about sixty unknown neutron-rich isotopes from element Ra ($Z$=88) to Db ($Z$=105) can be produced with the production cross sections above the lower bound of $10^{-8}$ mb in this reaction. And almost all of unknown neutron-rich isotopes are emitted at the laboratory angles $theta_{lab}leq$ 60$^circ$. Two cases, i.e. the production of the unknown uranium isotopes with $Ageq$ 244 and that of rutherfordium with $Ageq$ 269 are investigated for understanding the production mechanism of unknown neutron-rich isotopes. It is found that for the former case the collision time between two uranium nuclei is shorter and the primary fragments producing the residues have smaller excitation energies of $leq$ 30 MeV and the outgoing angles of those residues cover a range of 30$^circ$-60$^circ$. For the later case, the longer collision time is needed for a large number of nucleons being transferred and thus it results in the higher excitation energies and smaller outgoing angles of primary fragments, and eventually results in a very small production cross section for the residues of Rf with $Ageq$ 269 which have a small interval of outgoing angles of $theta_{lab}$=40$^circ$-50$^circ$.
We study the evolution of the eep cross section on nuclei with increasing asymmetry between the number of neutrons and protons. The calculations are done within the framework of the nonrelativistic and relativistic distorted-wave impulse approximation. In the nonrelativistic model phenomenological Woods-Saxon and Hartree-Fock wave functions are used for the proton bound-state wave functions, in the relativistic model the wave functions are solutions of Dirac-Hartree equations. The models are first tested against experimental data on $^{40}$Ca and $^{48}$Ca nuclei, and then they are applied to a set of spherical calcium isotopes.
We calculate neutrino-induced fission cross sections for selected nuclei with Z=84-92. We show that these reactions populate the daughter nucleus at excitation energies where shell effects are significantly washed out, effectively reducing the fission barrier. If the r-process occurs in the presence of a strong neutrino fluence, and electron neutrino average energies are sufficiently high, perhaps as a result of matter-enhanced neutrino flavor transformation, then neutrino-induced fission could lead to significant alteration in the r-process flow in slow outflow scenarios.
78 - M. Sin , R. Capote , M.W. Herman 2019
Comprehensive calculations of cross sections of photon induced reactions on $^{233-238}$U targets for incident photon energies from 3 up to 30 MeV are undertaken with the statistical model code EMPIRE-3.2 Malta. Results are compared with the experimental data from EXFOR and with the current evaluations. The differences and the similarities between the models and parameters used in calculations of photon- and neutron-induced reactions on the same nuclei are discussed with focus on fission. The role of the extended optical model for fission in improving the description of the measured data and in determining consistent sets of barrier parameters is pointed out.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا