Do you want to publish a course? Click here

Neutrino-induced fission of neutron-rich nuclei

178   0   0.0 ( 0 )
 Added by George M. Fuller
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate neutrino-induced fission cross sections for selected nuclei with Z=84-92. We show that these reactions populate the daughter nucleus at excitation energies where shell effects are significantly washed out, effectively reducing the fission barrier. If the r-process occurs in the presence of a strong neutrino fluence, and electron neutrino average energies are sufficiently high, perhaps as a result of matter-enhanced neutrino flavor transformation, then neutrino-induced fission could lead to significant alteration in the r-process flow in slow outflow scenarios.



rate research

Read More

A comparative study of fission of actinides specially $^{238}$U, by proton and bremsstrahlung photon is performed. Relative mass distribution of $^{238}$U fission fragments have been explored theoretically for both proton and photon induced fission. The integrated yield along with charge distribution of the products are calculated to find out the neutron richness in comparison to the nuclei produced by r-process in nucleosynthesis. Some r-process nuclei in intermediate mass range for symmetric fission mode are found to be produced almost two order of magnitude more for proton induced fission than photofission, although rest of the neutron rich nuclei in the asymmetric mode are produced in comparable proportion for both the processes.
155 - F. Minato , K. Hagino 2008
We discuss the sensitivity of fission barrier for heavy neutron-rich nuclei to fission paths in the two dimensional neutron-proton quadrupole plane. To this end, we use the constrained Skyrme-Hartree-Fock + BCS method, and examine the difference of fission barriers obtained with three constraining operators, that is, the neutron, proton, and mass quadrupole operators. We investigate $^{220}$U, $^{236}$U, and $^{266}$U, %from proton-rich to neutron-rich uranium isotopes, that is relevant to r-process nucleosynthesis. We find that the fission barrier heights are almost the same among the three constraining operators even for neutron-rich nuclei, indicating that the usual way to calculate fission barriers with the mass quadrupole operator is well justified. We also discuss the difference between proton and neutron deformation parameters along the fission paths.
We study the evolution of the eep cross section on nuclei with increasing asymmetry between the number of neutrons and protons. The calculations are done within the framework of the nonrelativistic and relativistic distorted-wave impulse approximation. In the nonrelativistic model phenomenological Woods-Saxon and Hartree-Fock wave functions are used for the proton bound-state wave functions, in the relativistic model the wave functions are solutions of Dirac-Hartree equations. The models are first tested against experimental data on $^{40}$Ca and $^{48}$Ca nuclei, and then they are applied to a set of spherical calcium isotopes.
103 - A. Mamdouh 2000
Using the ETFSI (extended Thomas-Fermi plus Strutinsky integral) method, we have calculated the fission barriers of nearly 2000 exotic nuclei, including all the neutron-rich nuclei up to A=318 that are expected to be relevant to the r-process, and all the superheavy nuclei in the vicinity of N=184, with Z<=120. Our calculations were performed with the Skyrme force SkSC4, which was determined in the ETFSI-1 mass fit. For proton-deficient nuclei in the region of N=184 we find the barriers to be much higher than previously believed, which suggests that the r-process path might continue to mass numbers well beyond 300. For the superheavy nuclei we typically find barrier heights of 6-7 MeV.
On the occasion of the $75^{th}$ anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavy-ion reactions $^{238}$U($^{18}$O,f) and $^{208}$Pb($^{18}$O,f) as well as a thermal neutron fission reaction $^{245}$Cm(n$^{th}$,f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا