Do you want to publish a course? Click here

Recent Experimental Results on Nuclear Cluster Physics

77   0   0.0 ( 0 )
 Added by Christian Beck
 Publication date 2016
  fields
and research's language is English
 Authors C. Beck




Ask ChatGPT about the research

Knowledge on nuclear cluster physics has increased considerably since the pioneering discovery of 12C+12C resonances half a century ago and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of exotic shapes and/or Bose-Einstein alpha condensates in light N-Z alpha-conjugate nuclei is investigated. Evolution of clustering from stability to the drip-lines examined with clustering aspects persisting in light neutron-rich nuclei is consistent with the extension of the Ikeda-diagram to non alpha-conjugate nuclei.



rate research

Read More

Knowledge on nuclear cluster physics has increased considerably as nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of exotic shapes in light N=Z alpha-like nuclei and the evolution of clustering from stability to the drip-lines are being investigated more and more accurately both theoretically and experimentally. Experimental progresses in understanding these questions were recently examined and will be further revisited in this introductory talk: clustering aspects are, in particular, discussed for light exotic nuclei with a large neutron excess such as neutron-rich Oxygen isotopes with their complete spectrocopy.
In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified e.g. 12C(alpha,gamma)16O for stellar evolution, or 13C(alpha,n)16O and 22Ne(alpha,n)25Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics, e.g. in gamma-ray emission from solar flares or in the interaction of cosmic rays with matter, and also motivate laboratory experiments. Finally, we show that beyond the historical motivations of nuclear astrophysics, understanding i) the energy sources that drive stellar evolution and ii) the origin of the elements can also be used to give new insights into physics beyond the standard model.
157 - D.V. Shetty , S.J. Yennello 2010
The nuclear symmetry energy is a fundamental quantity important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Considerable efforts are being made to experimentally extract the symmetry energy and its dependence on nuclear density and temperature. In this article, we review experimental studies carried out up-to-date and their current status.
Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results for the geo-neutrinos from Bi-214 decay, a process which accounts for about one half of the total geo-neutrino signal. The feeding probability of the lowest state of Bi-214 - the most important for geo-neutrino signal - is found to be p_0 = 0.177 pm 0.004 (stat) ^{+0.003}_{-0.001} (sys), under the hypothesis of Universal Neutrino Spectrum Shape (UNSS). This value is consistent with the (indirect) estimate of the Table of Isotopes (ToI). We show that achievable larger statistics and reduction of systematics should allow to test possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed.
An extensive experimental survey of the features of the disassembly of a small quasi-projectile system with $A sim$ 36, produced in the reactions of 47 MeV/nucleon $^{40}$Ar + $^{27}$Al, $^{48}$Ti and $^{58}$Ni, has been carried out. Nuclei in the excitation energy range of 1-9 MeV/u have been investigated employing a new method to reconstruct the quasi-projectile source. At an excitation energy $sim$ 5.6 MeV/nucleon many observables indicate the presence of maximal fluctuations in the de-excitation processes. The fragment topological structure shows that the rank sorted fragments obey Zipfs law at the point of largest fluctuations providing another indication of a liquid gas phase transition. The caloric curve for this system shows a monotonic increase of temperature with excitation energy and no apparent plateau. The temperature at the point of maximal fluctuations is $8.3 pm 0.5$ MeV. Taking this temperature as the critical temperature and employing the caloric curve information we have extracted the critical exponents $beta$, $gamma$ and $sigma$ from the data. Their values are also consistent with the values of the universality class of the liquid gas phase transition. Taken together, this body of evidence strongly suggests a phase change in an equilibrated mesoscopic system at, or extremely close to, the critical point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا