Do you want to publish a course? Click here

Critical Behavior in Light Nuclear Systems: Experimental Aspects

109   0   0.0 ( 0 )
 Added by Yu-Gang Ma
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

An extensive experimental survey of the features of the disassembly of a small quasi-projectile system with $A sim$ 36, produced in the reactions of 47 MeV/nucleon $^{40}$Ar + $^{27}$Al, $^{48}$Ti and $^{58}$Ni, has been carried out. Nuclei in the excitation energy range of 1-9 MeV/u have been investigated employing a new method to reconstruct the quasi-projectile source. At an excitation energy $sim$ 5.6 MeV/nucleon many observables indicate the presence of maximal fluctuations in the de-excitation processes. The fragment topological structure shows that the rank sorted fragments obey Zipfs law at the point of largest fluctuations providing another indication of a liquid gas phase transition. The caloric curve for this system shows a monotonic increase of temperature with excitation energy and no apparent plateau. The temperature at the point of maximal fluctuations is $8.3 pm 0.5$ MeV. Taking this temperature as the critical temperature and employing the caloric curve information we have extracted the critical exponents $beta$, $gamma$ and $sigma$ from the data. Their values are also consistent with the values of the universality class of the liquid gas phase transition. Taken together, this body of evidence strongly suggests a phase change in an equilibrated mesoscopic system at, or extremely close to, the critical point.



rate research

Read More

The critical behavior for the light nuclei with A$sim 36$ has been investigated experimentally by the NIMROD multi-detectors. The wide variety of observables indicate the critical point has been reached in the disassembly of hot nuclei at an excitation energy of 5.6$pm$0.5 MeV/u.
155 - D.V. Shetty , S.J. Yennello 2010
The nuclear symmetry energy is a fundamental quantity important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Considerable efforts are being made to experimentally extract the symmetry energy and its dependence on nuclear density and temperature. In this article, we review experimental studies carried out up-to-date and their current status.
Method: To examine signatures of this alpha-condensation, a compound nucleus reaction using 160, 280, and 400 MeV 16O beams impinging on a carbon target was used to investigate the 12C(16O,7a) reaction. This permits a search for near-threshold states in the alpha-conjugate nuclei up to 24Mg. Results: Events up to an alpha-particle multiplicity of 7 were measured and the results were compared to both an Extended Hauser-Feshbach calculation and the Fermi break-up model. The measured multiplicity distribution exceeded that predicted from a sequential decay mechanism and had a better agreement with the multi-particle Fermi break-up model. Examination of how these 7 alpha final states could be reconstructed to form 8Be and 12C(0_2+) showed a quantitative difference in which decay modes were dominant compared to the Fermi break-up model. No new states were observed in 16O, 20Ne, and 24Mg due to the effect of the N-alpha penetrability suppressing the total alpha-particle dissociation decay mode. Conclusion: The reaction mechanism for a high energy compound nucleus reaction can only be described by a hybrid of sequential decay and multi-particle breakup. Highly alpha-clustered states were seen which did not originate from simple binary reaction processes. Direct investigations of near-threshold states in N-alpha systems are inherently impeded by the Coulomb barrier prohibiting the observation of states in the N-alpha decay channel. No evidence of a highly clustered 15.1 MeV state in 16O was observed from (28Si*,12C(0_2+))16O(0_6+) when reconstructing the Hoyle state from 3 alpha-particles. Therefore, no experimental signatures for alpha-condensation were observed.
76 - C. Beck 2016
Knowledge on nuclear cluster physics has increased considerably since the pioneering discovery of 12C+12C resonances half a century ago and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of exotic shapes and/or Bose-Einstein alpha condensates in light N-Z alpha-conjugate nuclei is investigated. Evolution of clustering from stability to the drip-lines examined with clustering aspects persisting in light neutron-rich nuclei is consistent with the extension of the Ikeda-diagram to non alpha-conjugate nuclei.
Knowledge on nuclear cluster physics has increased considerably as nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of exotic shapes in light N=Z alpha-like nuclei and the evolution of clustering from stability to the drip-lines are being investigated more and more accurately both theoretically and experimentally. Experimental progresses in understanding these questions were recently examined and will be further revisited in this introductory talk: clustering aspects are, in particular, discussed for light exotic nuclei with a large neutron excess such as neutron-rich Oxygen isotopes with their complete spectrocopy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا