Do you want to publish a course? Click here

Local electronic properties of the graphene-protected giant Rashba-split BiAg$_2$ surface

180   0   0.0 ( 0 )
 Added by Yu. S. Dedkov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the preparation of the interface between graphene and the strong Rashba-split BiAg$_2$ surface alloy and investigatigation of its structure as well as the electronic properties by means of scanning tunneling microscopy/spectroscopy and density functional theory calculations. Upon evaluation of the quasiparticle interference patterns the unpertrubated linear dispersion for the $pi$ band of $n$-doped graphene is observed. Our results also reveal the intact nature of the giant Rashba-split surface states of the BiAg$_2$ alloy, which demonstrate only a moderate downward energy shift upon the presence of graphene. This effect is explained in the framework of density functional theory by an inward relaxation of the Bi atoms at the interface and subsequent delocalisation of the wave function of the surface states. Our findings demonstrate a realistic pathway to prepare a graphene protected giant Rashba-split BiAg$_2$ for possible spintronic applications.



rate research

Read More

Within density functional theory, we study bulk band structure and surface states of BiTeBr. We consider both ordered and disordered phases which differ in atomic order in the Te-Br sublattice. On the basis of relativistic ab-initio calculations, we show that the ordered BiTeBr is energetically preferable as compared with the disordered one. We demonstrate that both Te- and Br-terminated surfaces of the ordered BiTeBr hold surface states with a giant spin-orbit splitting. The Te-terminated surface-state spin splitting has the Rashba-type behavior with the coupling parameter alpha_R ~ 2 eVAA.
$alpha$-GeTe(111) is a non-centrosymmetric ferroelectric material, for which a strong spin-orbit interaction gives rise to giant Rashba split states in the bulk and at the surface. The detailed dispersions of the surface states inside the bulk band gap remains an open question because they are located in the unoccupied part of the electronic structure, making them inaccessible to static angle-resolved photoemission spectroscopy. We show that this difficulty can be overcome via in-situ potassium doping of the surface, leading to a rigid shift of 80 meV of the surface states into the occupied states. Thus, we resolve in great detail their dispersion and highlight their crossing at the $bar{Gamma}$ point, which, in comparison with density functional theory calculations, definitively confirms the Rashba mechanism.
83 - Peng Zhang , J.-Z. Ma , Y. Ishida 2016
We discover a pair of spin-polarized surface bands on the (111) face of grey arsenic by using angle-resolved photoemission spectroscopy (ARPES). In the occupied side, the pair resembles typical nearly-free-electron Shockley states observed on noble-metal surfaces. However, pump-probe ARPES reveals that the spin-polarized pair traverses the bulk band gap and that the crossing of the pair at $barGamma$ is topologically unavoidable. First-principles calculations well reproduce the bands and their non-trivial topology; the calculations also support that the surface states are of Shockley type because they arise from a band inversion caused by crystal field. The results provide compelling evidence that topological Shockley states are realized on As(111).
Rashba spin-orbit splitting in the magnetic materials opens up a new perspective in the field of spintronics. Here, we report a giant Rashba-type spin-orbit effect on PrGe [010] surface in the paramagnetic phase with Rashba coefficient {alpha}_R=5 eV{AA}. Significant changes in the electronic band structure has been observed across the phase transitions from paramagnetic to antiferromagnetic (44 K) and from antiferromagnetic to the ferromagnetic ground state (41.5 K). We find that Pr 4f states in PrGe is strongly hybridized with the Pr 5d and Ge 4s-4p states near the Fermi level. The behavior of Rashba effect is found to be different in the k_x and the k_y directions showing electron-like and the hole-like bands, respectively. The possible origin of Rashba effect in the paramagnetic phase is related to the anti-parallel spin polarization present in this system. First-principles density functional calculations of Pr terminated surface with the anti-parallel spins shows a fair agreement with the experimental results. We find that the anti-parallel spins are strongly coupled to the lattice such that the PrGe system behaves like weak ferromagnetic system. Analysis of the energy dispersion curves at different magnetic phases showed that there is a competition between the Dzyaloshinsky-Moriya interaction and the exchange interaction which gives rise to the magnetic ordering in PrGe. Supporting evidences of the presence of Dzyaloshinsky-Moriya interaction are observed as anisotropic magnetoresistance with respect to field direction and first-order type hysteresis in the X-ray diffraction measurements. A giant negative magnetoresistance of 43% in the antiferromagnetic phase and tunable Rashba parameter with temperature across the magnetic transitions makes this material a suitable candidate for technological application in the antiferromagnetic spintronic devices.
We present a detailed analysis of the band structure of the BiAg$_2$/Ag/Si(111) trilayer system by means of high resolution Angle Resolved Photoemission Spectroscopy (ARPES). BiAg2/Ag/Si(111) exhibits a complex spin polarized electronic structure due to giant spin-orbit interactions. We show that a complete set of constant energy ARPES maps, supplemented by a modified nearly free electron calculation, provides a unique insight into the structure of the spin polarized bands and spin gaps. We also show that the complex gap structure can be continuously tuned in energy by a controlled deposition of an alkali metal.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا