Do you want to publish a course? Click here

Superluminous supernova 2015bn in the nebular phase: evidence for the engine-powered explosion of a stripped massive star

118   0   0.0 ( 0 )
 Added by Matt Nicholl
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present nebular-phase imaging and spectroscopy for the hydrogen-poor superluminous supernova SN 2015bn, at redshift z=0.1136, spanning +250-400 d after maximum light. The light curve exhibits a steepening in the decline rate from 1.4 mag/(100 d) to 1.7 mag/(100 d), suggestive of a significant decrease in the opacity. This change is accompanied by a transition from a blue continuum superposed with photospheric absorption lines to a nebular spectrum dominated by emission lines of oxygen, calcium and magnesium. There are no obvious signatures of circumstellar interaction or large nickel mass. We show that the spectrum at +400 d is virtually identical to a number of energetic Type Ic supernovae such as SN 1997dq, SN 2012au, and SN 1998bw, indicating similar core conditions and strengthening the link between `hypernovae/long gamma-ray bursts and superluminous supernovae. A single explosion mechanism may unify these events that span absolute magnitudes of -22 < M_B < -17. Both the light curve and spectrum of SN 2015bn are consistent with an engine-driven explosion ejecting 7-30 M$_odot$ of oxygen-dominated ejecta (for reasonable choices in temperature and opacity). A strong and relatively narrow O II $lambda$7774 line, seen in a number of these energetic events but not in normal supernovae, may point to an inner shell that is the signature of a central engine.

rate research

Read More

In this paper, we discuss the outcomes of the follow-up campaign of SN 2018ijp, discovered as part of the Zwicky Transient Facility survey for optical transients. Its first spectrum shows similarities to broad-lined Type Ic supernovae around maximum light, whereas later spectra display strong signatures of interaction between rapidly expanding ejecta and a dense H-rich circumstellar medium, coinciding with a second peak in the photometric evolution of the transient. This evolution, along with the results of modeling of the first light curve peak, suggests a scenario where a stripped star exploded within a dense circumstellar medium. The two main phases in the evolution of the transient could be interpreted as a first phase dominated by radioactive decays, and an later interaction-dominated phase where the ejecta collide with a pre-existing shell. We therefore discuss SN 2018jp within the context of a massive star depleted of its outer layers exploding within a dense H-rich circumstellar medium.
We analyze a KeckI/LRIS nebular spectrum taken 268 days after $B$-band maximum of ASASSN-18bt (SN~2018oh), a Type Ia supernova (SN Ia) observed by {it K2} at the time of explosion. ASASSN-18bt exhibited a two-component rise to peak brightness, possibly the signature of an interaction between the SN ejecta and a large ($gtrsim 20~R_odot$) nearby, non-degenerate companion. We search for emission signatures of stripped material from a non-degenerate companion in the nebular spectrum and find no evidence for any unbound material. We place an upper limit of $< 0.006~M_odot$ on the amount of stripped/ablated H-rich material that could go undetected in our spectrum, effectively ruling out all hydrogen-rich donor stars. Additionally, we place a more tentative upper limit on HeI emission in the observed spectrum of $lesssim 0.02~M_odot$ which also rules out helium star companions. Our deep limits rule out a non-degenerate companion as the explanation for the early-time feature in ASASSN-18bt.
Blue-supergiant stars develop into core-collapse supernovae --- one of the most energetic outbursts in the universe --- when all nuclear burning fuel is exhausted in the stellar core. Previous attempts failed to explain observed explosions of such stars which have a zero-age main sequence mass of 50~M$_odot$ or more. Here we exploit the largely uncertain state of matter at high density, and connect the modeling of such stellar explosions with a first-order phase transition from nuclear matter to the quark-gluon plasma. The resulting energetic supernova explosions can account for a large variety of lightcurves, from peculiar type II to super-luminous events. The remnants are neutron stars with quark matter core, known as hybrid stars, of about 2~M$_odot$ at birth. A galactic event of this kind could be observable due to the release of a second neutrino burst. Its observation would confirm such a first-order phase transition at densities relevant for astrophysics.
We present observations of SN 2015bn (= PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at redshift $z=0.1136$. As well as being one of the closest SLSNe I yet discovered, it is intrinsically brighter ($M_Uapprox-23.1$) and in a fainter galaxy ($M_Bapprox-16.0$) than other SLSNe at $zsim0.1$. We used this opportunity to collect the most extensive dataset for any SLSN I to date, including densely-sampled spectroscopy and photometry, from the UV to the NIR, spanning $-$50 to +250 days from optical maximum. SN 2015bn fades slowly, but exhibits surprising undulations in the light curve on a timescale of 30-50 days, especially in the UV. The spectrum shows extraordinarily slow evolution except for a rapid transformation between +7 and +20-30 days. No narrow emission lines from slow-moving material are observed at any phase. We derive physical properties including the bolometric luminosity, and find slow velocity evolution and non-monotonic temperature and radial evolution. A deep radio limit rules out a healthy off-axis gamma-ray burst, and places constraints on the pre-explosion mass loss. The data can be consistently explained by a $gtrsim10,{rm M}_odot$ stripped progenitor exploding with $sim 10^{51},$erg kinetic energy, forming a magnetar with a spin-down timescale of $sim20$ days (thus avoiding a gamma-ray burst) that reheats the ejecta and drives ionization fronts. The most likely alternative scenario -- interaction with $sim20,{rm M}_odot$ of dense, inhomogeneous circumstellar material -- can be tested with continuing radio follow-up.
Aims. We present and analyse late-time observations of the type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, taken at $sim$300 days after the explosion, and discuss these in the context of constraints on the supernovas progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in close binary system. Methods. Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg~I]$lambdalambda$4571, [O~I]$lambdalambda$6300, 6364, and [Ca~II]$lambdalambda$7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compare the [O~I]/[Ca~II] line ratio with other supernovae. Results. The core oxygen mass of the supernova progenitor was estimated to be $lesssim$0.7 M$_odot$, which implies initial progenitor mass not exceeding $sim$15 -- 17 M$_odot$. Since the derived mass is too small for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O~I]/[Ca~II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower-mass progenitors of stripped-envelope and type-II supernovae.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا