Do you want to publish a course? Click here

Nebular phase observations of the type-Ib supernova iPTF13bvn favour a binary progenitor

123   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. We present and analyse late-time observations of the type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, taken at $sim$300 days after the explosion, and discuss these in the context of constraints on the supernovas progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in close binary system. Methods. Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg~I]$lambdalambda$4571, [O~I]$lambdalambda$6300, 6364, and [Ca~II]$lambdalambda$7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compare the [O~I]/[Ca~II] line ratio with other supernovae. Results. The core oxygen mass of the supernova progenitor was estimated to be $lesssim$0.7 M$_odot$, which implies initial progenitor mass not exceeding $sim$15 -- 17 M$_odot$. Since the derived mass is too small for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O~I]/[Ca~II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower-mass progenitors of stripped-envelope and type-II supernovae.



rate research

Read More

As the closest Type Ia supernova in decades, SN 2014J provides a unique opportunity for detailed investigation into observational signatures of the progenitor system and explosion mechanism in addition to burning product distribution. We present a late-time near-infrared spectral series from Gemini-N at $307-466$ days after the explosion. Following the $H$-band evolution probes the distribution of radioactive iron group elements, the extent of mixing, and presence of magnetic fields in the expanding ejecta. Comparing the isolated $1.6440$ $mu$m [Fe II] emission line with synthetic models shows consistency with a Chandrasekhar-mass white dwarf of $rho_c=0.7times10^9$ g cm${}^{-3}$ undergoing a delayed detonation. The ratio of the flux in the neighboring $1.54$ $mu$m emission feature to the flux in the $1.6440$ $mu$m feature shows evidence of some limited mixing of stable and radioactive iron group elements in the central regions. Additionally, the evolution of the $1.6440$ $mu$m line shows an intriguing asymmetry. When measuring line-width of this feature, the data show an increase in line width not seen in the evolution of the synthetic spectra, corresponding to $approx1{,}000$ km s${}^{-1}$, which could be caused by a localized transition to detonation producing asymmetric ionization in the ejecta. Using the difference in width between the different epochs, an asymmetric component in the central regions, corresponding to approximately the inner $2times10^{-4}$ of white dwarf mass suggests an off-center ignition of the initial explosion and hence of the kinematic center from the chemical center. Several additional models investigated, including a He detonation and a merger, have difficulty reproducing the features seen these spectra.
Supernova LSQ13abf was discovered soon after explosion by the La Silla-QUEST Survey and followed by the CSP II at optical and near-IR wavelengths. Our analysis indicates LSQ13abf was discovered within two days of explosion and its first 10 days of evolution reveal a B-band light curve with an abrupt drop in luminosity. Contemporaneously, the V-band light curve exhibits a rise towards a first peak and the r- and i-band light curves show no early peak. The early light-curve evolution of LSQ13abf is reminiscent of the post explosion cooling phase observed in the Type Ib SN 2008D, and the similarity between the two objects extends over weeks. Spectroscopically, LSQ13abf resembles SN 2008D with P Cygni He I features that strengthen over time. Spectral energy distributions are constructed from broad-band photometry, and by fitting black-body (BB) functions a UVOIR light curve is constructed, and the underlying BB-temperature and BB-radius profiles are estimated. Explosion parameters are estimated by simultaneously fitting an Arnett model to the UVOIR light curve and the velocity evolution derived from spectral features, and a post-shock breakout cooling model to the first two epochs of the bolometric evolution. This combined model suggests an explosion energy of 1.3x10$^{51}$ ergs, a relatively high ejecta mass of 5.94 M$_{odot}$, a Ni mass of 0.16 M$_{odot}$, and a progenitor-star radius of 28.0 R$_{odot}$. The ejecta mass suggests the origins of LSQ13abf lie with a >25 M$_{odot}$ ZAMS progenitor and its radius is three and nine times larger than values estimated from the same analysis applied to observations of SNe 2008D and 1999ex, respectively. Alternatively, comparison of hydrodynamical simulations of >20-25 M$_{odot}$ ZAMS progenitors that evolve to pre-SN envelope masses around 10 M$_{odot}$ and extended (~100 R$_{odot}$) envelopes also match the observations of LSQ13abf.
Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor candidate in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope (HST) observations of the SN site 740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, which implies that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed progenitor models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will require further observations to disentangle the contribution of a much fainter SN and its environment.
We present Hubble Space Telescope imaging of a pre-explosion counterpart to SN 2019yvr obtained 2.6 years before its explosion as a type Ib supernova (SN Ib). Aligning to a post-explosion Gemini-S/GSAOI image, we demonstrate that there is a single source consistent with being the SN 2019yvr progenitor system, the second SN Ib progenitor candidate after iPTF13bvn. We also analyzed pre-explosion Spitzer/IRAC imaging, but we do not detect any counterparts at the SN location. SN 2019yvr was highly reddened, and comparing its spectra and photometry to those of other, less extinguished SNe Ib we derive $E(B-V)=0.51substack{+0.27-0.16}$ mag for SN 2019yvr. Correcting photometry of the pre-explosion source for dust reddening, we determine that this source is consistent with a $log(L/L_{odot}) = 5.3 pm 0.2$ and $T_{mathrm{eff}} = 6800substack{+400-200}$ K star. This relatively cool photospheric temperature implies a radius of 320$substack{+30-50} R_{odot}$, much larger than expectations for SN Ib progenitor stars with trace amounts of hydrogen but in agreement with previously identified SN IIb progenitor systems. The photometry of the system is also consistent with binary star models that undergo common envelope evolution, leading to a primary star hydrogen envelope mass that is mostly depleted but seemingly in conflict with the SN Ib classification of SN 2019yvr. SN 2019yvr had signatures of strong circumstellar interaction in late-time ($>$150 day) spectra and imaging, and so we consider eruptive mass loss and common envelope evolution scenarios that explain the SN Ib spectroscopic class, pre-explosion counterpart, and dense circumstellar material. We also hypothesize that the apparent inflation could be caused by a quasi-photosphere formed in an extended, low-density envelope or circumstellar matter around the primary star.
The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC5806 (22.5Mpc). Our spectral sequence in the optical and infrared suggests a likely Type Ib classification. We identify a single, blue progenitor candidate in deep pre-explosion imaging within a 2{sigma} error circle of 80 mas (8.7 pc). The candidate has a MB luminosity of -5.2 +/- 0.4 mag and a B-I color of 0.1+/-0.3 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 1.1 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in cm and mm-wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass loading parameter of 1.3*10^12 g/cm. Assuming a wind velocity of 10^3km/s, we derive a progenitor mass loss rate of 3*10^-5Msun/yr. Our observations, taken as a whole, are consistent with a Wolf Rayet progenitor of the supernova iPTF13bvn.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا