Do you want to publish a course? Click here

SN 2018ijp: the explosion of a stripped-envelope star within a dense H-rich shell?

94   0   0.0 ( 0 )
 Added by Leonardo Tartaglia
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we discuss the outcomes of the follow-up campaign of SN 2018ijp, discovered as part of the Zwicky Transient Facility survey for optical transients. Its first spectrum shows similarities to broad-lined Type Ic supernovae around maximum light, whereas later spectra display strong signatures of interaction between rapidly expanding ejecta and a dense H-rich circumstellar medium, coinciding with a second peak in the photometric evolution of the transient. This evolution, along with the results of modeling of the first light curve peak, suggests a scenario where a stripped star exploded within a dense circumstellar medium. The two main phases in the evolution of the transient could be interpreted as a first phase dominated by radioactive decays, and an later interaction-dominated phase where the ejecta collide with a pre-existing shell. We therefore discuss SN 2018jp within the context of a massive star depleted of its outer layers exploding within a dense H-rich circumstellar medium.



rate research

Read More

We present observations of SN 2021csp, a unique supernova (SN) which displays evidence for interaction with H- and He- poor circumstellar material (CSM) at early times. Using high-cadence spectroscopy taken over the first week after explosion, we show that the spectra of SN 2021csp are dominated by C III lines with a velocity of 1800 km s$^{-1}$. We associate this emission with CSM lost by the progenitor prior to explosion. Subsequently, the SN displays narrow He lines before metamorphosing into a broad-lined Type Ic SN. We model the bolometric light curve of SN 2021csp, and show that it is consistent with the energetic ($4times10^{51}$ erg) explosion of a stripped star, producing 0.4 M$_odot$ of 56Ni within a $sim$1 M$_odot$ shell of CSM extending out to 400 R$_odot$.
We report optical and near-infrared observations of SN 2012ca with the Public ESO Spectroscopy Survey of Transient Objects (PESSTO), spread over one year since discovery. The supernova (SN) bears many similarities to SN 1997cy and to other events classified as Type IIn but which have been suggested to have a thermonuclear origin with narrow hydrogen lines produced when the ejecta impact a hydrogen-rich circumstellar medium (CSM). Our analysis, especially in the nebular phase, reveals the presence of oxygen, magnesium and carbon features. This suggests a core collapse explanation for SN2012ca, in contrast to the thermonuclear interpretation proposed for some members of this group. We suggest that the data can be explained with a hydrogen and helium deficient SN ejecta (Type I) interacting with a hydrogen-rich CSM, but that the explosion was more likely a Type Ic core-collapse explosion than a Type Ia thermonuclear one. This suggests two channels (both thermonuclear and stripped envelope core-collapse) may be responsible for these SN 1997cy-like events.
We present observations of ZTF18abfcmjw (SN2019dge), a helium-rich supernova with a fast-evolving light curve indicating an extremely low ejecta mass ($approx 0.3,M_odot$) and low kinetic energy ($approx 1.2times 10^{50},{rm erg}$). Early-time (<4 d after explosion) photometry reveal evidence of shock cooling from an extended helium-rich envelope of $sim0.1,M_odot$ located at $sim 3times 10^{12},{rm cm}$ from the progenitor. Early-time He II line emission and subsequent spectra show signatures of interaction with helium-rich circumstellar material, which extends from $gtrsim 5times 10^{13},{rm cm}$ to $gtrsim 2times 10^{16},{rm cm}$. We interpret SN2019dge as a helium-rich supernova from an ultra-stripped progenitor, which originates from a close binary system consisting of a mass-losing helium star and a low-mass main sequence star or a compact object (i.e., a white dwarf, a neutron star, or a black hole). We infer that the local volumetric birth rate of 19dge-like ultra-stripped SNe is in the range of 1400--8200$,{rm Gpc^{-3}, yr^{-1}}$ (i.e., 2--12% of core-collapse supernova rate). This can be compared to the observed coalescence rate of compact neutron star binaries that are not formed by dynamical capture.
We present modelling of line polarization to study multi-dimensional geometry of stripped-envelope core-collapse supernovae (SNe). We demonstrate that a purely axisymmetric, two-dimensional geometry cannot reproduce a loop in the Stokes Q-U diagram, i.e., a variation of the polarization angles along the velocities associated with the absorption lines. On the contrary, three-dimensional (3D) clumpy structures naturally reproduce the loop. The fact that the loop is commonly observed in stripped-envelope SNe suggests that SN ejecta generally have a 3D structure. We study the degree of line polarization as a function of the absorption depth for various 3D clumpy models with different clump sizes and covering factors. Comparison between the calculated and observed degree of line polarization indicates that a typical size of the clump is relatively large, >~ 25 % of the photospheric radius. Such large-scale clumps are similar to those observed in the SN remnant Cassiopeia A. Given the small size of the observed sample, the covering factor of the clumps is only weakly constrained (~ 5-80 %). The presence of large-scale clumpy structure suggests that the large-scale convection or standing accretion shock instability takes place at the onset of the explosion.
We present optical and near-infrared observations of SN~Ib~2019ehk. We show that it evolved to a Ca-rich transient according to its spectral properties and evolution in late phases. It, however, shows a few distinguishable properties from the canonical Ca-rich transients: a short-duration first peak in the light curve, high peak luminosity, and association with a star-forming environment. Indeed, some of these features are shared with iPTF14gqr and iPTF16hgs, which are candidates for a special class of core-collapse SNe (CCSNe): the so-called ultra-stripped envelope SNe, i.e., a relatively low-mass He (or C+O) star explosion in a binary as a precursor of double neutron star binaries. The estimated ejecta mass ($0.43 M_odot$) and explosion energy ($1.7 times 10^{50} $~erg) are consistent with this scenario. The analysis of the first peak suggests existence of dense circumstellar material in the vicinity of the progenitor, implying a CCSN origin. Based on these analyses, we suggest SN 2019ehk is another candidate for an ultra-stripped envelope SN. These ultra-stripped envelope SN candidates seem to form a subpopulation among Ca-rich transients, associated with young population. We propose that the key to distinguishing this population is the early first peak in their light curves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا