No Arabic abstract
Delta Epsilon Alpha Star is a minimal coverage, real-time robotic search algorithm that yields a moderately aggressive search path with minimal backtracking. Search performance is bounded by a placing a combinatorial bound, epsilon and delta, on the maximum deviation from the theoretical shortest path and the probability at which further deviations can occur. Additionally, we formally define the notion of PAC-admissibility -- a relaxed admissibility criteria for algorithms, and show that PAC-admissible algorithms are better suited to robotic search situations than epsilon-admissible or strict algorithms.
As partial justification of their framework for iterated belief revision Darwiche and Pearl convincingly argued against Boutiliers natural revision and provided a prototypical revision operator that fits into their scheme. We show that the Darwiche-Pearl arguments lead naturally to the acceptance of a smaller class of operators which we refer to as admissible. Admissible revision ensures that the penultimate input is not ignored completely, thereby eliminating natural revision, but includes the Darwiche-Pearl operator, Nayaks lexicographic revision operator, and a newly introduced operator called restrained revision. We demonstrate that restrained revision is the most conservative of admissible revision operators, effecting as few changes as possible, while lexicographic revision is the least conservative, and point out that restrained revision can also be viewed as a composite operator, consisting of natural revision preceded by an application of a backwards revision operator previously studied by Papini. Finally, we propose the establishment of a principled approach for choosing an appropriate revision operator in different contexts and discuss future work.
This paper introduces a multi-period inspector scheduling problem (MPISP), which is a new variant of the multi-trip vehicle routing problem with time windows (VRPTW). In the MPISP, each inspector is scheduled to perform a route in a given multi-period planning horizon. At the end of each period, each inspector is not required to return to the depot but has to stay at one of the vertices for recuperation. If the remaining time of the current period is insufficient for an inspector to travel from his/her current vertex $A$ to a certain vertex B, he/she can choose either waiting at vertex A until the start of the next period or traveling to a vertex C that is closer to vertex B. Therefore, the shortest transit time between any vertex pair is affected by the length of the period and the departure time. We first describe an approach of computing the shortest transit time between any pair of vertices with an arbitrary departure time. To solve the MPISP, we then propose several local search operators adapted from classical operators for the VRPTW and integrate them into a tabu search framework. In addition, we present a constrained knapsack model that is able to produce an upper bound for the problem. Finally, we evaluate the effectiveness of our algorithm with extensive experiments based on a set of test instances. Our computational results indicate that our approach generates high-quality solutions.
Symbolic control techniques aim to satisfy complex logic specifications. A critical step in these techniques is the construction of a symbolic (discrete) abstraction, a finite-state system whose behaviour mimics that of a given continuous-state system. The methods used to compute symbolic abstractions, however, require knowledge of an accurate closed-form model. To generalize them to systems with unknown dynamics, we present a new data-driven approach that does not require closed-form dynamics, instead relying only the ability to evaluate successors of each state under given inputs. To provide guarantees for the learned abstraction, we use the Probably Approximately Correct (PAC) statistical framework. We first introduce a PAC-style behavioural relationship and an appropriate refinement procedure. We then show how the symbolic abstraction can be constructed to satisfy this new behavioural relationship. Moreover, we provide PAC bounds that dictate the number of data required to guarantee a prescribed level of accuracy and confidence. Finally, we present an illustrative example.
We consider the problem of learning rules from a data set that support a proof of a given query, under Valiants PAC-Semantics. We show how any backward proof search algorithm that is sufficiently oblivious to the contents of its knowledge base can be modified to learn such rules while it searches for a proof using those rules. We note that this gives such algorithms for standard logics such as chaining and resolution.
We present new results for the matrix elements of the Q_6 and Q_4 penguin operators, evaluated in a large-Nc approach which incorporates important O(N_c^2frac{n_f}{N_c}) unfactorized contributions. Our approach shows analytic matching between short- and long-distance scale dependences within dimensional renormalization schemes, such as MS-bar. Numerically, we find that there is a large positive contribution to the Delta I =1/2 matrix element of Q_6 and hence to the direct CP-violation parameter epsilon/epsilon. We also present results for the Delta I = 1/2 rule in K -> pi pi amplitudes, which incorporate the related and important ``eye-diagram contributions of O(N_c^2frac{1}{N_c}) from the Q_2 operator (i.e. the penguin-like contraction). The results lead to an enhancement of the Delta I = 1/2 effective coupling. The origin of the large unfactorized contributions which we find is discussed in terms of the relevant scales of the problem.