Do you want to publish a course? Click here

Minimal Ingredients for Orbital Texture Switches at Dirac Points in Strong Spin-Orbit Coupled Materials

59   0   0.0 ( 0 )
 Added by Justin Waugh
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent angle resolved photoemission spectroscopy measurements on strong spin-orbit coupled materials have shown an in-plane orbital texture switch at their respective Dirac points, regardless of whether they are topological insulators or trivial Rashba materials. This feature has also been demonstrated in a few materials ($text{Bi}_2text{Se}_3$, $text{Bi}_2text{Te}_3$, and $text{BiTeI}$) though DFT calculations. Here we present a minimal orbital-derived tight binding model to calculate the electron wave-function in a two-dimensional crystal lattice. We show that the orbital components of the wave-function demonstrate an orbital-texture switch in addition to the usual spin switch seen in spin polarized bands. This orbital texture switch is determined by the existence of three main properties: local or global inversion symmetry breaking, strong spin-orbit coupling, and non-local physics (the electrons are on a lattice). Using our model we demonstrate that the orbital texture switch is ubiquitous and to be expected in many real systems. The orbital hybridization of the bands is the key aspect for understanding the unique wave function properties of these materials, and this minimal model helps to establish the quantum perturbations that drive these hybridizations.

rate research

Read More

Antiferromagnetic spintronics actively introduces new principles of magnetic memory, in which the most fundamental spin-dependent phenomena, i.e. anisotropic magnetoresistance effects, are governed by an antiferromagnet instead of a ferromagnet. A general scenario of the antiferromagnetic anisotropic magnetoresistance effects mainly stems from the magnetocrystalline anisotropy related to spin-orbit coupling. Here we demonstrate magnetic field driven contour rotation of the fourfold anisotropic magnetoresistance in bare antiferromagnetic Sr2IrO4/SrTiO3 (001) thin films hosting a strong spin-orbit coupling induced Jeff=1/2 Mott state. Concurrently, an intriguing minimal in the magnetoresistance emerges. Through first principles calculations, the band-gap engineering due to rotation of the Ir isospins is revealed to be responsible for these emergent phenomena, different from the traditional scenario where relatively more conductive state was obtained usually when magnetic field was applied along the magnetic easy axis. Our findings demonstrate a new efficient route, i.e. via the novel Jeff=1/2 state, to realize controllable anisotropic magnetoresistance in antiferromagnetic materials.
We show that the spin-orbit interaction (SOI) produced by the Coulomb fields of charged impurities provides an efficient mechanism for the bound states formation. The mechanism can be realized in 2D materials with sufficiently strong Rashba SOI provided that the impurity locally breaks the structure inversion symmetry in the direction normal to the layer.
Topological insulators are novel macroscopic quantum-mechanical phase of matter, which hold promise for realizing some of the most exotic particles in physics as well as application towards spintronics and quantum computation. In all the known topological insulators, strong spin-orbit coupling is critical for the generation of the protected massless surface states. Consequently, a complete description of the Dirac state should include both the spin and orbital (spatial) parts of the wavefunction. For the family of materials with a single Dirac cone, theories and experiments agree qualitatively, showing the topological state has a chiral spin texture that changes handedness across the Dirac point (DP), but they differ quantitatively on how the spin is polarized. Limited existing theoretical ideas predict chiral local orbital angular momentum on the two sides of the DP. However, there have been neither direct measurements nor calculations identifying the global symmetry of the spatial wavefunction. Here we present the first results from angle-resolved photoemission experiment and first-principles calculation that both show, counter to current predictions, the in-plane orbital wavefunctions for the surface states of Bi2Se3 are asymmetric relative to the DP, switching from being tangential to the k-space constant energy surfaces above DP, to being radial to them below the DP. Because the orbital texture switch occurs exactly at the DP this effect should be intrinsic to the topological physics, constituting an essential yet missing aspect in the description of the topological Dirac state. Our results also indicate that the spin texture may be more complex than previously reported, helping to reconcile earlier conflicting spin resolved measurements.
143 - Y. Cao , J. A. Waugh , N. C. Plumb 2012
One of the most important properties of topological insulators (TIs) is the helical spin texture of the Dirac surface states, which has been theoretically and experimentally argued to be left-handed helical above the Dirac point and right handed helical below. However, since the spin is not a good quantum number in these strongly spin-orbit coupled systems, this can not be a complete statement, and we must consider the total angular momentum J = L + S that is a contribution of the spin and orbital terms. Using a combination of orbital and spin-resolved angle-resolved photoemission spectroscopy (ARPES), we show a direct link between the different orbital and spin components, with a backwards spin texture directly observed for the in-plane orbital states of Bi2Se3.
We study thermoelectric transport at low temperatures in correlated Kondo insulators, motivated by the recent observation of a high thermoelectric figure of merit(ZT) in $FeSb_2$ at $T sim 10 K$. Even at room temperature, correlations have the potential to lead to high ZT, as in $YbAl_3$, one of the most widely used thermoelectric metals. At low temperature correlation effects are especially worthy of study because fixed band structures are unlikely to give rise to the very small energy gaps $E_g sim 5 kT$ necessary for a weakly correlated material to function efficiently at low temperature. We explore the possibility of improving the thermoelectric properties of correlated Kondo insulators through tuning of crystal field and spin-orbit coupling and present a framework to design more efficient low-temperature thermoelectrics based on our results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا