Do you want to publish a course? Click here

Coupled Spin-Orbital Texture in a Prototypical Topological Insulator

160   0   0.0 ( 0 )
 Added by Yue Cao
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the most important properties of topological insulators (TIs) is the helical spin texture of the Dirac surface states, which has been theoretically and experimentally argued to be left-handed helical above the Dirac point and right handed helical below. However, since the spin is not a good quantum number in these strongly spin-orbit coupled systems, this can not be a complete statement, and we must consider the total angular momentum J = L + S that is a contribution of the spin and orbital terms. Using a combination of orbital and spin-resolved angle-resolved photoemission spectroscopy (ARPES), we show a direct link between the different orbital and spin components, with a backwards spin texture directly observed for the in-plane orbital states of Bi2Se3.



rate research

Read More

Topological insulators represent a new quantum state of matter that are insulating in the bulk but metallic on the edge or surface. In the Dirac surface state, it is well-established that the electron spin is locked with the crystal momentum. Here we report a new phenomenon of the spin texture locking with the orbital texture in a topological insulator Bi2Se3. We observe light-polarization-dependent spin texture of both the upper and lower Dirac cones that constitutes strong evidence of the orbital-dependent spin texture in Bi2Se3. The different spin texture detected in variable polarization geometry is the manifestation of the spin-orbital texture in the initial state combined with the photoemission matrix element effects. Our observations provide a new orbital degree of freedom and a new way of light manipulation in controlling the spin structure of the topological insulators that are important for their future applications in spin-related technologies.
142 - Yi Chen , Wei Ruan , Meng Wu 2019
Mott insulating behavior is induced by strong electron correlation and can lead to exotic states of matter such as unconventional superconductivity and quantum spin liquids. Recent advances in van der Waals material synthesis enable the exploration of novel Mott systems in the two-dimensional limit. Here we report characterization of the local electronic properties of single- and few-layer 1T-TaSe2 via spatial- and momentum-resolved spectroscopy involving scanning tunneling microscopy and angle-resolved photoemission. Our combined experimental and theoretical study indicates that electron correlation induces a robust Mott insulator state in single-layer 1T-TaSe2 that is accompanied by novel orbital texture. Inclusion of interlayer coupling weakens the insulating phase in 1T-TaSe2, as seen by strong reduction of its energy gap and quenching of its correlation-driven orbital texture in bilayer and trilayer 1T-TaSe2. Our results establish single-layer 1T-TaSe2 as a useful new platform for investigating strong correlation physics in two dimensions.
143 - C. H. Wong , R.A. Duine 2012
We investigate topological transport in a spin-orbit coupled bosonic Mott insulator. We show that interactions can lead to anomalous quasi-particle dynamics even when the spin-orbit coupling is abelian. To illustrate the latter, we consider the spin-orbit coupling realized in the experiment of Lin textit{et al}. [Nature (London) textbf{471}, 83 (2011)]. For this spin-orbit coupling, we compute the quasiparticle dispersions and spectral weights, the interaction-induced momentum space Berry curvature, and the momentum space distribution of spin density, and propose experimental signatures. Furthermore, we find that in our approximation for the single-particle propagator, the ground state can in principle support an integer Hall conductivity if the sum of the Chern numbers of the hole bands is nonzero.
Using ab initio calculations, we have investigated an insulating tetragonally distorted perovskite BaCrO$_3$ with a formal $3d^2$ configuration, the volume of which is apparently substantially enhanced by a strain due to SrTiO$_3$ substrate. Inclusion of both correlation and spin-orbit coupling (SOC) effects leads to a metal-insulator transition and in-plane zigzag orbital-ordering (OO) of alternating singly filled $d_{xz}+id_{yz}$ and $d_{xz}-id_{yz}$ orbitals, which results in a large orbital moment $M_L$ ~ -0.78 $mu_B$ antialigned to the spin moment $M_S$ ~ $2|M_L|$ in Cr ions. Remarkably, this ordering also induces a considerable $M_L$ for apical oxygens. Our findings show metal-insulator and OO transitions, driven by an interplay among strain, correlation, and SOC, which is uncommon in 3d systems.
Recently discovered materials called three-dimensional topological insulators constitute examples of symmetry protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-magnetic bulk insulators is the protected metallic electronic states confined to the materials surfaces. Electrons in these surface states are spin polarized with their spins governed by their direction of travel (linear momentum), resulting in a helical spin texture in momentum space. Spin- and angle-resolved photoemission spectroscopy (spin-ARPES) has been the only tool capable of directly observing this central feature with simultaneous energy, momentum, and spin sensitivity. By using an innovative photoelectron spectrometer with a high-flux laser-based light source, we discovered another surprising property of these surface electrons which behave like Dirac fermions. We found that the spin polarization of the resulting photoelectrons can be fully manipulated in all three dimensions through selection of the light polarization. These surprising effects are due to the spin-dependent interaction of the helical Dirac fermions with light, which originates from the strong spin-orbit coupling in the material. Our results illustrate unusual scenarios in which the spin polarization of photoelectrons is completely different from the spin state of electrons in the originating initial states. The results also provide the basis for a novel source of highly spin-polarized electrons with tunable polarization in three dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا