No Arabic abstract
We theoretically propose a nonreciprocal spin Seebeck effect, i.e., nonreciprocal spin transport generated by a temperature gradient, in antiferromagnetic insulators with broken inversion symmetry. We find that nonreciprocity in antiferromagnets has rich properties not expected in ferromagnets. In particular, we show that polar antiferromagnets, in which the crystal lacks the spatial inversion symmetry, exhibit perfect nonreciprocity --- one-way spin current flow irrespective of the direction of the temperature gradient. We also show that nonpolar centrosymmetric crystals can exhibit nonreciprocity when a magnetic order breaks the inversion symmetry, and in this case, the direction of the nonreciprocal flow can be controlled by reversing the magnetic domain. As their representatives, we calculate the nonreciprocal spin Seebeck voltages for the polar antiferromagnet $alpha$-Cu$_2$V$_2$O$_7$ and the honeycomb antiferromagnet MnPS$_3$, while varying temperature and magnetic field.
Integrated optically-inspired wave-based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin-waves represent a promising route due to their nanoscale wavelength in the GHz frequency range and rich phenomenology. Here, we realize a versatile optically-inspired platform using spin-waves, demonstrating the wavefront engineering, focusing, and robust interference of spin-waves with nanoscale wavelength. In particular, we use magnonic nanoantennas based on tailored spin-textures for launching spatially shaped coherent wavefronts, diffraction-limited spin-wave beams, and generating robust multi-beam interference patterns, which spatially extend for several times the spin-wave wavelength. Furthermore, we show that intriguing features, such as resilience to back-reflection, naturally arise from the spin-wave nonreciprocity in synthetic antiferromagnets, preserving the high quality of the interference patterns from spurious counterpropagating modes. This work represents a fundamental step towards the realization of nanoscale optically-inspired devices based on spin-waves.
We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect driven by an interfacial temperature difference between itinerant electrons and magnons. The measured time-evolution of spin accumulation induced by laser-excitation indicates transfer of angular momentum across Au/Y$_3$Fe$_5$O$_{12}$ and Cu/Y$_3$Fe$_5$O$_{12}$ interfaces on a picosecond time-scale. The product of spin-mixing conductance and interfacial spin Seebeck coefficient determined is of the order of $10^8$ A m$^{-2}$ K$^{-1}$.
A new measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.
Magnon spin Nernst effect was recently proposed as an intrinsic effect in antiferromagnets, where spin diffusion and boundary spin transmission have been ignored. However, diffusion processes are essential to convert a bulk spin current into boundary spin accumulation, which determines the spin injection rate into detectors through imperfect transmission. We formulate a diffusive theory of the magnon spin Nernst effect with boundary conditions reflecting real device geometry. Thanks to the diffusion effect, the output signals in both electronic and optical detection grow rapidly with an increasing system size in the transverse dimension, which eventually saturate. Counterintuitively, the measurable signals are even functions of magnetic field, yielding optical detection more reliable than electronic detection.
The interplay between spin and heat currents at magnetic insulator|nonmagnetic metal interfaces has been a subject of much scrutiny because of both fundamental physics and the promise for technological applications. While ferrimagnetic and, more recently, antiferromagnetic systems have been extensively investigated, a theory generalizing the heat-to-spin interconversion in noncollinear magnets is still lacking. Here, we establish a general framework for thermally-driven spin transport at the interface between a noncollinear magnet and a normal metal. Modeling the interfacial coupling between localized and itinerant magnetic moments via an exchange Hamiltonian, we derive an expression for the spin current, driven by a temperature difference, for an arbitrary noncollinear magnetic order. Our theory reproduces previously obtained results for ferromagnetic and antiferromagnet systems.