Do you want to publish a course? Click here

Beam performance and instrumentation studies for the ProtoDUNE-DP experiment of CENF

169   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this note, we address the beam performance (particle content, rates) with emphasis on the momentum determination and particle identification methods for the new H2-VLE (Very Low Energy) beam line that will serve the double phase ProtoDUNE experiment (also known as WA105), in the framework of the CENF project. The proposed instrumentation is configured to achieve an optimal pi/K/proton separation over the full spectrum of provided beam energies, from 0.4 GeV up to 12 GeV, as well as precise momentum measurement to a percent level, if required by the experiment. This note focuses on the H2-VLE beam line for the Double Phase ProtoDUNE experiment, however the same approach can be implemented for the H4-VLE beam, since the design of the two beam lines is very similar.



rate research

Read More

124 - D. Belver , J. Boix , E. Calvo 2021
ProtoDUNE-DP is a 6x6x6 m3 liquid argon time-projection-chamber operated at the CERN Neutrino Platform in 2019-2020 as a prototype of the Dual Phase concept for the DUNE Far Detector. The Photon Detection System (PDS) is based on 36 8-inch photo-multiplier tubes (PMTs) and allows triggering on the scintillation light signals produced by cosmic rays and other charged particles traversing the detector. The acquisition and calibration software specifically developed for the ProtoDUNE-DP PDS is described in this paper. This software controls the high-voltage power supplies, the calibration system, and the PDS DAQ. It has been developed with Qt Creator, and features different operation modes, and a graphical user interface. This software has already been validated and used during the ProtoDUNE-DP operation.
469 - F. Acerbi , A. Berra , M. Bonesini 2020
The uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016-2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/ENUBET. A key element of the project is the instrumentation of the decay tunnel to monitor large angle positrons produced together with $ u_e$ in the three body decays of kaons ($K_{e3}$) and to discriminate them from neutral and charged pions. The need for an efficient and high purity e/$pi$ separation over a length of several meters, and the requirements for fast response and radiation hardness imposed by the harsh beam environment, suggested the implementation of a longitudinally segmented Fe/scintillator calorimeter with a readout based on WLS fibers and SiPM detectors. An extensive experimental program through several test beam campaigns at the CERN-PS T9 beam line has been pursued on calorimeter prototypes, both with a shashlik and a lateral readout configuration. The latter, in which fibers collect the light from the side of the scintillator tiles, allows to place the light sensors away from the core of the calorimeter, thus reducing possible irradiation damages with respect to the shashlik design. This contribution will present the achievements of the prototyping activities carried out, together with irradiation tests made on the Silicon Photo-Multipliers. The results achieved so far pin down the technology of choice for the construction of the 3 m long demonstrator that will take data in 2021.
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of $7.2times 6.0times 6.9$ m$^3$. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV$/c$ to 7 GeV/$c$. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SPs performance, including noise and gain measurements, $dE/dx$ calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SPs successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
The ALICE muon trigger (MTR) system consists of 72 Resistive Plate Chamber (RPC) detectors arranged in two stations, each composed of two planes with 18 RPCs per plane. The detectors are operated in maxi-avalanche mode using a mixture of 89.7% C$_2$H$_2$F$_4$, 10% i-C$_4$H$_{10}$ and 0.3% SF$_6$. A number of detector performance indicators, such as efficiency and dark current, have been monitored over time throughout the LHC Run2 (2015-18). While the efficiency showed very good stability, a steady increase in the absorbed dark current was observed. Since the end of 2018, the LHC has entered a phase of long shutdown, during which the ALICE experiment will be upgraded to cope with the next phase of data taking, expected in 2021. The MTR is undergoing a major upgrade of the front-end and readout electronics, and will change its functionalities, becoming a Muon Identifier. Only the replacement of the most irradiated RPCs is planned during the upgrade. It is therefore important to perform dedicated studies to gain further insights into the status of the detector. In particular, two RPCs were flushed with pure Ar gas for a prolonged period of time and a plasma was created by fully ionizing the gas. The output gas was analyzed using a Gas Chromatograph combined with a Mass Spectrometer and the possible presence of fluorinated compounds originating from the interaction of the plasma with the inner surfaces of the detector has been assessed using an Ion-Selective Electrode station. This contribution will include a detailed review of the ALICE muon RPC performance at the LHC. The procedure and results of the argon plasma test, described above, are also discussed.
The Deep Underground Neutrino Experiment (DUNE) is a leading-edge, international experiment for neutrino science and proton decay studies. This experiment is looking for answers regarding several fundamental questions about the nature of matter and the evolution of the universe: origin of matter, unification of forces, physics of black holes. Two far detector prototypes using two distinct technologies have been developed at CERN. The prototypes are testing and validating the liquid argon time projection chamber technology (LArTPC). In neutrino physics, as well as in any experiment with rare interaction rate, the good knowledge of the radioactive backgrounds is important to the success of the study. Unlike most of the charged particles or short lived neutral particles, muons and neutrons represent the main sources of background for this kind of experiments. In this paper, we have considered two sources of neutrons: cosmic neutrons and neutrons coming from the accelerating tunnel. Also, cosmic muons are taken into account. The contribution of these particles to the production of radioactive isotopes inside the active volume of the detector in comparison to the one corresponding to muons is shown. Also, simulations of nuclear reactions for the processes of interest for investigating the radioactive background due to the lack of measurements or insufficient experimental data are presented. The results presented are of interest for the future underground DUNE experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا