Do you want to publish a course? Click here

Nonlinear Bloch-waves and current states of exciton-polariton condensates

61   0   0.0 ( 0 )
 Added by Igor Chestnov Yu.
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The formation of nonlinear Bloch states in open driven-dissipative system of exciton-polaritons loaded into a weak-contrast 1D periodic lattice is studied numerically and analytically. The condensate is described within the framework of mean-field theory by the coupled equations for the order parameter and for the density of incoherent excitons. The stationary nonlinear solutions having the structure of Bloch waves are studied in detail. It is shown that there is a bifurcation leading to the appearance of a family of essentially nonlinear states. The special feature of these solutions is that its current does not vanish when the quasi-momentum of the state approaches the values equal to the half of the lattice constant. To explain the bifurcations found in numerical simulations a simple perturbative approach is developed. The stability of the nonlinear states is examined by linear spectral analysis and by direct numerical simulations. An experimental scheme allowing the observation of the discussed nonlinear current states is suggested and studied by numerical simulations.



rate research

Read More

We present a scheme of interaction-induced topological bandstructures based on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We predict theoretically that this scheme allows the engineering of topological gaps, without requiring a magnetic field or strong spin-orbit interaction (transverse electric-transverse magnetic splitting). Under non-resonant pumping, we find that an initially topologically trivial system undergoes a topological transition upon the spontaneous breaking of phase symmetry associated with polariton condensation. Under resonant coherent pumping, we find that it is also possible to engineer a topological dispersion that is linear in wavevector -- a property associated with polariton superfluidity.
We examine the photoluminescence of highly-excited exciton-polariton condensates in semiconductor microcavities. Under strong pumping, exciton-polariton condensates have been observed to undergo a lasing transition where strong coupling between the excitons and photons is lost. We discuss an alternative high-density scenario, where the strong coupling is maintained. We find that the photoluminescence smoothly transitions between the lower polariton energy to the cavity photon energy. An intuitive understanding of the change in spectral characteristics is given, as well as differences to the photoluminescence characteristics of the lasing case.
Recently a new type of system exhibiting spontaneous coherence has emerged -- the exciton-polariton condensate. Exciton-polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a superposition of an exciton and a cavity photon. Above a threshold density the polaritons macroscopically occupy the same quantum state, forming a condensate. The lifetime of the polaritons are typically comparable to or shorter than thermalization times, making them possess an inherently non-equilibrium nature. Nevertheless, they display many of the features that would be expected of equilibrium Bose-Einstein condensates (BECs). The non-equilibrium nature of the system raises fundamental questions of what it means for a system to be a BEC, and introduces new physics beyond that seen in other macroscopically coherent systems. In this review we focus upon several physical phenomena exhibited by exciton-polariton condensates. In particular we examine topics such as the difference between a polariton BEC, a polariton laser, and a photon laser, as well as physical phenomena such as superfluidity, vortex formation, BKT (Berezinskii-Kosterlitz-Thouless) and BCS (Bardeen-Cooper-Schrieffer) physics. We also discuss the physics and applications of engineered polariton structures.
We present a theoretical study of synchronization dynamics in incoherently pumped exciton-polariton condensates in coupled polariton traps. Our analysis is based on a coupled-mode theory for the generalized Gross-Pitaevskii equation, which employs an expansion in non-Hermitian, pump-dependent modes appropriate for the pumped geometry. We find that polariton-polariton and reservoir-polariton interactions play competing roles and lead to qualitatively different synchronized phases of the coupled polariton modes as pumping power is increased. Crucially, these interactions can also act against each other to hinder synchronization. We map out a phase diagram and discuss the general characteristics of these phases using a generalized Adler equation.
113 - C. Anton , T. C .H. Liew , G. Tosi 2013
We present a time-resolved study of energy relaxation and trapping dynamics of polariton condensates in a semiconductor microcavity ridge. The combination of two non-resonant, pulsed laser sources in a GaAs ridge-shaped microcavity gives rise to profuse quantum phenomena where the repulsive potentials created by the lasers allow the modulation and control of the polariton flow. We analyze in detail the dependence of the dynamics on the power of both lasers and determine the optimum conditions for realizing an all-optical polariton condensate transistor switch. The experimental results are interpreted in the light of simulations based on a generalized Gross-Pitaevskii equation, including incoherent pumping, decay and energy relaxation within the condensate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا