No Arabic abstract
We present a theoretical study of synchronization dynamics in incoherently pumped exciton-polariton condensates in coupled polariton traps. Our analysis is based on a coupled-mode theory for the generalized Gross-Pitaevskii equation, which employs an expansion in non-Hermitian, pump-dependent modes appropriate for the pumped geometry. We find that polariton-polariton and reservoir-polariton interactions play competing roles and lead to qualitatively different synchronized phases of the coupled polariton modes as pumping power is increased. Crucially, these interactions can also act against each other to hinder synchronization. We map out a phase diagram and discuss the general characteristics of these phases using a generalized Adler equation.
We examine the photoluminescence of highly-excited exciton-polariton condensates in semiconductor microcavities. Under strong pumping, exciton-polariton condensates have been observed to undergo a lasing transition where strong coupling between the excitons and photons is lost. We discuss an alternative high-density scenario, where the strong coupling is maintained. We find that the photoluminescence smoothly transitions between the lower polariton energy to the cavity photon energy. An intuitive understanding of the change in spectral characteristics is given, as well as differences to the photoluminescence characteristics of the lasing case.
We present a time-resolved study of energy relaxation and trapping dynamics of polariton condensates in a semiconductor microcavity ridge. The combination of two non-resonant, pulsed laser sources in a GaAs ridge-shaped microcavity gives rise to profuse quantum phenomena where the repulsive potentials created by the lasers allow the modulation and control of the polariton flow. We analyze in detail the dependence of the dynamics on the power of both lasers and determine the optimum conditions for realizing an all-optical polariton condensate transistor switch. The experimental results are interpreted in the light of simulations based on a generalized Gross-Pitaevskii equation, including incoherent pumping, decay and energy relaxation within the condensate.
Observation of quantized vortices in non-equilibrium polariton condensates has been reported either by spontaneous formation and pinning in the presence of disorder or by imprinting them onto the signal or idler of an optical parametric oscillator (OPO). Here, we report a detailed analysis of the creation and annihilation of polariton vortex-antivortex pairs in the signal state of a polariton OPO by means of a short optical Gaussian pulse at a certain finite pump wave-vector. A time-resolved, interferometric analysis of the emission allows us to extract the phase of the perturbed condensate and to reveal the dynamics of the supercurrents created by the pulsed probe. This flow is responsible for the appearance of the topological defects when counter-propagating to the underlying currents of the OPO signal.
Recently a new type of system exhibiting spontaneous coherence has emerged -- the exciton-polariton condensate. Exciton-polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a superposition of an exciton and a cavity photon. Above a threshold density the polaritons macroscopically occupy the same quantum state, forming a condensate. The lifetime of the polaritons are typically comparable to or shorter than thermalization times, making them possess an inherently non-equilibrium nature. Nevertheless, they display many of the features that would be expected of equilibrium Bose-Einstein condensates (BECs). The non-equilibrium nature of the system raises fundamental questions of what it means for a system to be a BEC, and introduces new physics beyond that seen in other macroscopically coherent systems. In this review we focus upon several physical phenomena exhibited by exciton-polariton condensates. In particular we examine topics such as the difference between a polariton BEC, a polariton laser, and a photon laser, as well as physical phenomena such as superfluidity, vortex formation, BKT (Berezinskii-Kosterlitz-Thouless) and BCS (Bardeen-Cooper-Schrieffer) physics. We also discuss the physics and applications of engineered polariton structures.
We demonstrate theoretically the spontaneous formation of a stochastic polarization in exciton-polariton Bose-Einstein condensates in planar microcavities under pulsed excitation. Below the threshold pumping intensity (dependent on the polariton life-time) the average polarization degree is close to zero, whilst above threshold the condensate acquires a polarization described by a (pseudospin) vector with random orientation, in general. We establish the link between second order coherence of the polariton condensate and the distribution function of its polarization. We examine also the mechanisms of polarization dephasing and relaxation.