No Arabic abstract
Associated to each finite dimensional linear representation of a group $G$, there is a vector bundle over the classifying space $BG$. We introduce a framework for studying this construction in the context of infinite discrete groups, taking into account the topology of representation spaces. This involves studying the homotopy group completion of the topological monoid formed by all unitary (or general linear) representations of $G$, under the monoid operation given by block sum. In order to work effectively with this object, we prove a general result showing that for certain homotopy commutative topological monoids $M$, the homotopy groups of $Omega BM$ can be described explicitly in terms of unbased homotopy classes of maps from spheres into $M$. Several applications are developed. We relate our constructions to the Novikov conjecture; we show that the space of flat unitary connections over the 3-dimensional Heisenberg manifold has extremely large homotopy groups; and for groups that satisfy Kazhdans property (T) and admit a finite classifying space, we show that the reduced $K$-theory class associated to a spherical family of finite dimensional unitary representations is always torsion.
In this paper we explain how Morse theory for the Yang-Mills functional can be used to prove an analogue, for surface groups, of the Atiyah-Segal theorem. Classically, the Atiyah-Segal theorem relates the representation ring R(Gamma) of a compact Lie group $Gamma$ to the complex K-theory of the classifying space $BGamma$. For infinite discrete groups, it is necessary to take into account deformations of representations, and with this in mind we replace the representation ring by Carlssons deformation $K$--theory spectrum $K (Gamma)$ (the homotopy-theoretical analogue of $R(Gamma)$). Our main theorem provides an isomorphism in homotopy $K_*(pi_1 Sigma)isom K^{-*}(Sigma)$ for all compact, aspherical surfaces $Sigma$ and all $*>0$. Combining this result with work of Tyler Lawson, we obtain homotopy theoretical information about the stable moduli space of flat unitary connections over surfaces.
In this note we prove the analogue of the Atiyah-Segal completion theorem for equivariant twisted K-theory in the setting of an arbitrary compact Lie group G and an arbitrary twisting of the usually considered type. The theorem generalizes a result by C. Dwyer, who has proven the theorem for finite G and twistings of a more restricted type. Whi
It is known by results of Dyckerhoff-Kapranov and of Galvez--Carrillo-Kock-Tonks that the output of the Waldhausen S.-construction has a unital 2-Segal structure. Here, we prove that a certain S.-functor defines an equivalence between the category of augmented stable double categories and the category of unital 2-Segal sets. The inverse equivalence is described explicitly by a path construction. We illustrate the equivalence for the known examples of partial monoids, cobordism categories with genus constraints and graph coalgebras.
In a previous paper, we showed that a discrete version of the $S_bullet$-construction gives an equivalence of categories between unital 2-Segal sets and augmented stable double categories. Here, we generalize this result to the homotopical setting, by showing that there is a Quillen equivalence between a model category for unital 2-Segal objects and a model category for augmented stable double Segal objects which is given by an $S_bullet$-construction. We show that this equivalence fits together with the result in the discrete case and briefly discuss how it encompasses other known $S_bullet$-constructions.
In this paper we introduce an equivariant extension of the Chern-Simons form, associated to a path of connections on a bundle over a manifold M, to the free loop space LM, and show it determines an equivalence relation on the set of connections on a bundle. We use this to define a ring, loop differential K-theory of M, in much the same way that differential K-theory can be defined using the Chern-Simons form [SS]. We show loop differential K-theory yields a refinement of differential K-theory, and in particular incorporates holonomy information into its classes. Additionally, loop differential K-theory is shown to be strictly coarser than the Grothendieck group of bundles with connection up to gauge equivalence. Finally, we calculate loop differential K-theory of the circle.