Do you want to publish a course? Click here

The Atiyah--Segal completion theorem in twisted K-theory

128   0   0.0 ( 0 )
 Added by Anssi Lahtinen
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

In this note we prove the analogue of the Atiyah-Segal completion theorem for equivariant twisted K-theory in the setting of an arbitrary compact Lie group G and an arbitrary twisting of the usually considered type. The theorem generalizes a result by C. Dwyer, who has proven the theorem for finite G and twistings of a more restricted type. Whi

rate research

Read More

251 - Daniel A. Ramras 2018
In this paper we explain how Morse theory for the Yang-Mills functional can be used to prove an analogue, for surface groups, of the Atiyah-Segal theorem. Classically, the Atiyah-Segal theorem relates the representation ring R(Gamma) of a compact Lie group $Gamma$ to the complex K-theory of the classifying space $BGamma$. For infinite discrete groups, it is necessary to take into account deformations of representations, and with this in mind we replace the representation ring by Carlssons deformation $K$--theory spectrum $K (Gamma)$ (the homotopy-theoretical analogue of $R(Gamma)$). Our main theorem provides an isomorphism in homotopy $K_*(pi_1 Sigma)isom K^{-*}(Sigma)$ for all compact, aspherical surfaces $Sigma$ and all $*>0$. Combining this result with work of Tyler Lawson, we obtain homotopy theoretical information about the stable moduli space of flat unitary connections over surfaces.
64 - Daniel A. Ramras 2016
Associated to each finite dimensional linear representation of a group $G$, there is a vector bundle over the classifying space $BG$. We introduce a framework for studying this construction in the context of infinite discrete groups, taking into account the topology of representation spaces. This involves studying the homotopy group completion of the topological monoid formed by all unitary (or general linear) representations of $G$, under the monoid operation given by block sum. In order to work effectively with this object, we prove a general result showing that for certain homotopy commutative topological monoids $M$, the homotopy groups of $Omega BM$ can be described explicitly in terms of unbased homotopy classes of maps from spheres into $M$. Several applications are developed. We relate our constructions to the Novikov conjecture; we show that the space of flat unitary connections over the 3-dimensional Heisenberg manifold has extremely large homotopy groups; and for groups that satisfy Kazhdans property (T) and admit a finite classifying space, we show that the reduced $K$-theory class associated to a spherical family of finite dimensional unitary representations is always torsion.
In this note we introduce the notion of bundle gerbe K-theory and investigate the relation to twisted K-theory. We provide some examples. Possible applications of bundle gerbe K-theory to the classification of D-brane charges in non-trivial backgrounds are discussed.
We consider the algebraic K-theory of a truncated polynomial algebra in several commuting variables, K(k[x_1, ..., x_n]/(x_1^a_1, ..., x_n^a_n)). This naturally leads to a new generalization of the big Witt vectors. If k is a perfect field of positive characteristic we describe the K-theory computation in terms of a cube of these Witt vectors on N^n. If the characteristic of k does not divide any of the a_i we compute the K-groups explicitly. We also compute the K-groups modulo torsion for k=Z. To understand this K-theory spectrum we use the cyclotomic trace map to topological cyclic homology, and write TC(k[x_1, ..., x_n]/(x_1^a_1, ..., x_n^a_n)) as the iterated homotopy cofiber of an n-cube of spectra, each of which is easier to understand. Updated: This is a substantial revision. We corrected several errors in the description of the Witt vectors on a truncation set on N^n and modified the key proofs accordingly. We also replaces several topological statement with purely algebraic ones. Most arguments have been reworked and streamlined.
The family of Thom spectra $y(n)$ interpolate between the sphere spectrum and the mod two Eilenberg-MacLane spectrum. Computations of Mahowald, Ravenel, and Shick and the authors show that the $E_1$ ring spectrum $y(n)$ has chromatic complexity $n$. We show that topological periodic cyclic homology of $y(n)$ has chromatic complexity $n+1$. This gives evidence that topological periodic cyclic homology shifts chromatic height at all chromatic heights, supporting a variant of the Ausoni--Rognes red-shift conjecture. We also show that relative algebraic K-theory, topological cyclic homology, and topological negative cyclic homology of $y(n)$ at least preserve chromatic complexity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا