Do you want to publish a course? Click here

D3-D5 theories with unquenched flavors

101   0   0.0 ( 0 )
 Added by Alfonso V. Ramallo
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We construct the string duals of the defect theories generated when N_f flavor D5-branes intersect N_c color D3-branes along a 2+1 dimensional subspace. We work in the Veneziano limit in which N_c and N_f are large and N_f/N_c is fixed. By smearing the D5-branes, we find supergravity solutions that take into account the backreaction of the flavor branes and preserve two supercharges. When the flavors are massless the resulting metric displays an anisotropic Lifshitz-like scale invariance. The case of massive quarks is also considered.



rate research

Read More

We construct a black hole geometry generated by the intersection of $N_c$ color D3- branes and $N_f$ flavor D5-branes along a 2+1 dimensional subspace. Working in the Veneziano limit in which $N_f$ is large and distributing homogeneously the D5-branes in the internal space, we calculate the solution of the equations of motion of supergravity plus sources which includes the backreaction of the flavor branes. The solution is analytic and dual to a 2+1 dimensional defect in a 3+1 dimensional gauge theory, with $N_f$ massless hypermultiplets living in the defect. The smeared background we obtain can be regarded as the holographic realization of a multilayered system. We study the thermodynamics of the resulting spatially anisotropic geometry and compute the first and second order transport coefficients for perturbations propagating along the defect. We find that, in our system, the dynamics of excitations within a layer can be described by a stack of effective D2-branes.
We review the construction of gravitational solutions holographically dual to N=1 quiver gauge theories with dynamical flavor multiplets. We focus on the D3-D7 construction and consider the finite temperature, finite quark chemical potential case where there is a charged black hole in the dual solution. Discussed physical outputs of the model include its thermodynamics (with susceptibilities) and general hydrodynamic properties.
We compute the strong coupling limit of the boundary reflection factor for excitations on open strings attached to various kinds of D5-branes that probe AdS5 x S5. We study the crossing equation, which constrains the boundary reflection factor, and propose that some solutions will give the boundary reflection factors for all values of the coupling. Our proposal passes various checks in the strong coupling limit by comparison with diverse explicit string theory computations. In some of the cases we consider, the D5-branes correspond to 1/2 BPS Wilson loops in the k-th rank antisymmetric representation of the dual field theory. In the other cases they correspond in the dual field theory to the addition of a fundamental hypermultiplet in a defect.
We consider states of the D1-D5 CFT where only the left-moving sector is excited. As we deform away from the orbifold point, some of these states will remain BPS while others can `lift. We compute this lifting for a particular family of D1-D5-P states, at second order in the deformation off the orbifold point. We note that the maximally twisted sector of the CFT is special: the covering surface appearing in the correlator can only be genus one while for other sectors there is always a genus zero contribution. We use the results to argue that fuzzball configurations should be studied for the full class including both extremal and near-extremal states; many extremal configurations may be best seen as special limits of near extremal configurations.
We study the properties of a D6-brane probe in the ABJM background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and non-vanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at non-zero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number $N_f$ of unquenched quarks of the background.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا