No Arabic abstract
Two prominent efforts aimed at probing beyond Standard Model physics, searches for a neutron electric dipole moment (EDM) and measurements of the muon $g-2$ anomalous magnetic moment, employ spin precession techniques. In the most recent neutron EDM experiment, frequency shifts induced by magnetic field gradients and $mathbf{E} times mathbf{v}$ motional fields were a significant source of systematic error. We consider the possibility of a similar effect in the most recent muon $g-2$ experiment, and find that such an effect could potentially be as large as $sim 1$ ppm fractional error, to be compared with the reported $sim 0.5$ ppm error.
I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_mu$ from Brookhaven E821 by a factor of 4; that is, $delta a_mu sim 16 times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.
We consider the light $Z$ explanation of the muon $g-2$ anomaly. Even if such a $Z$ has no tree-level coupling to electrons, in general one will be induced at loop-level. We show that future beam dump experiments are powerful enough to place stringent constraints on$-$or discover$-$a $Z$ with loop-suppressed couplings to electrons. Such bounds are avoided only if the $Z$ has a large interaction with neutrinos, in which case the scenario will be bounded by ongoing neutrino scattering experiments. The complementarity between beam dump and neutrino scattering experiments therefore indicates that there are good prospects of probing a large part of the $Z$ parameter space in the near future.
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $omega_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiments muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of $a_{mu}({rm FNAL}) = 116,592,040(54) times 10^{-11}$ (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the eleven separate determinations of omega_a, and the systematic uncertainties on the result.
The long-standing muon $g-2$ anomaly has been confirmed recently at the Fermilab. The combined discrepancy from Fermilab and Brookhaven results shows a difference from the theory at a significance of 4.2 $sigma$. In addition, the LHC has updated the lower mass bound of a pure wino. In this letter, we study to what extent the $g-2$ can be explained in anomaly mediation scenarios, where the pure wino is the dominant dark matter component. To this end, we derive some model-independent constraints on the particle spectra and $g-2$. We find that the $g-2$ explanation at the 1$sigma$ level is driven into a corner if the higgsino threshold correction is suppressed. On the contrary, if the threshold correction is sizable, the $g-2$ can be explained. In the whole viable parameter region, the gluino mass is at most $2-4,$TeV, the bino mass is at most $2,$TeV, and the wino dark matter mass is at most $1-2,$TeV. If the muon $g-2$ anomaly is explained in the anomaly mediation scenarios, colliders and indirect search for the dark matter may find further pieces of evidence in the near future. Possible UV models for the large threshold corrections are discussed.
We show that a unified framework based on an $SU(2)_H$ horizontal symmetry which generates a naturally large neutrino transition magnetic moment and explains the XENON1T electron recoil excess also predicts a positive shift in the muon anomalous magnetic moment. This shift is of the right magnitude to be consistent with the Brookhaven measurement as well as the recent Fermilab measurement of the muon $g-2$. A relatively light neutral scalar from a Higgs doublet with mass near 100 GeV contributes to muon $g-2$, while its charged partner induces the neutrino magnetic moment. We analyze the collider tests of this framework and find that the HL-LHC can probe the entire parameter space of these models.