Do you want to publish a course? Click here

Muon ${g-2}$ Anomaly and Neutrino Magnetic Moments

138   0   0.0 ( 0 )
 Added by Sudip Jana
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We show that a unified framework based on an $SU(2)_H$ horizontal symmetry which generates a naturally large neutrino transition magnetic moment and explains the XENON1T electron recoil excess also predicts a positive shift in the muon anomalous magnetic moment. This shift is of the right magnitude to be consistent with the Brookhaven measurement as well as the recent Fermilab measurement of the muon $g-2$. A relatively light neutral scalar from a Higgs doublet with mass near 100 GeV contributes to muon $g-2$, while its charged partner induces the neutrino magnetic moment. We analyze the collider tests of this framework and find that the HL-LHC can probe the entire parameter space of these models.



rate research

Read More

98 - Wen Yin 2021
The long-standing muon $g-2$ anomaly has been confirmed recently at the Fermilab. The combined discrepancy from Fermilab and Brookhaven results shows a difference from the theory at a significance of 4.2 $sigma$. In addition, the LHC has updated the lower mass bound of a pure wino. In this letter, we study to what extent the $g-2$ can be explained in anomaly mediation scenarios, where the pure wino is the dominant dark matter component. To this end, we derive some model-independent constraints on the particle spectra and $g-2$. We find that the $g-2$ explanation at the 1$sigma$ level is driven into a corner if the higgsino threshold correction is suppressed. On the contrary, if the threshold correction is sizable, the $g-2$ can be explained. In the whole viable parameter region, the gluino mass is at most $2-4,$TeV, the bino mass is at most $2,$TeV, and the wino dark matter mass is at most $1-2,$TeV. If the muon $g-2$ anomaly is explained in the anomaly mediation scenarios, colliders and indirect search for the dark matter may find further pieces of evidence in the near future. Possible UV models for the large threshold corrections are discussed.
Recent precise measurement of the electron anomalous magnetic moment (AMM) adds to the longstanding tension of the muon AMM and together strongly point towards physics beyond the Standard Model (BSM). In this work, we propose a solution to both anomalies in an economical fashion via a light scalar that emerges from a second Higgs doublet and resides in the $mathcal{O}(10)$-MeV to $mathcal{O}(1)$-GeV mass range yielding the right sizes and signs for these deviations due to one-loop and two-loop dominance for the muon and the electron, respectively. A scalar of this type is subject to a number of various experimental constraints, however, as we show, it can remain sufficiently light by evading all experimental bounds and has the great potential to be discovered in the near-future low-energy experiments. The analysis provided here is equally applicable to any BSM scenario for which a light scalar is allowed to have sizable flavor-diagonal couplings to the charged leptons. In addition to the light scalar, our theory predicts the existence of a nearly degenerate charged scalar and a pseudoscalar, which have masses of the order of the electroweak scale. We analyze possible ways to probe new-physics signals at colliders and find that this scenario can be tested at the LHC by looking at the novel process $pp to H^pm H^pm jj to l^pm l^pm j j + {E!!!!/}_{T}$ via same-sign pair production of charged Higgs bosons.
The Fermilab Muon $g-2$ collaboration recently announced the first result of measurement of the muon anomalous magnetic moment ($g-2$), which confirmed the previous result at the Brookhaven National Laboratory and thus the discrepancy with its Standard Model prediction. We revisit low-scale supersymmetric models that are naturally capable to solve the muon $g-2$ anomaly, focusing on two distinct scenarios: chargino-contribution dominated and pure-bino-contribution dominated scenarios. It is shown that the slepton pair-production searches have excluded broad parameter spaces for both two scenarios, but they are not closed yet. For the chargino-dominated scenario, the models with $m_{tilde{mu}_{rm L}}gtrsim m_{tilde{chi}^{pm}_1}$ are still widely allowed. For the bino-dominated scenario, we find that, although slightly non-trivial, the region with low $tan beta$ with heavy higgsinos is preferred. In the case of universal slepton masses, the low mass regions with $m_{tilde{mu}}lesssim 230$ GeV can explain the $g-2$ anomaly while satisfying the LHC constraints. Furthermore, we checked that the stau-bino coannihilation works properly to realize the bino thermal relic dark matter. We also investigate heavy staus case for the bino-dominated scenario, where the parameter region that can explain the muon $g-2$ anomaly is stretched to $m_{tilde{mu}}lesssim 1.3$ TeV.
The present work introduces two possible extensions of the Standard Model Higgs sector. In the first case, the Zee-Babu type model for the generation of neutrino mass is augmented with a scalar triplet and additional singly charged scalar singlets. The second scenario, on the other hand, generalizes the Type-II seesaw model by replicating the number of the scalar triplets. A $mathbb{Z}_3$ symmetry is imposed in case of both the scenarios, but, allowed to be violated by terms of mass dimension two and three for generating neutrino masses and mixings. We examine how the models so introduced can explain the experimental observation on the muon anomalous magnetic moment. We estimate the two-loop contribution to neutrino mass induced by the scalar triplet, in addition to what comes from the doubly charged singlet in the usual Zee-Babu framework, in the first model. On the other hand, the neutrino mass arises in the usual Type-II fashion in the second model. In addition, the role of the $mathbb{Z}_3$ symmetry in suppressing lepton flavor violation is also elucidated.
We construct models with minimal field content that can simultaneously explain the muon g-2 anomaly and give the correct dark matter relic abundance. These models fall into two general classes, whether or not the new fields couple to the Higgs. For the general structure of models without new Higgs couplings, we provide analytical expressions that only depend on the $SU(2)_L$ representation. These results allow to demonstrate that only few models in this class can simultaneously explain $(g-2)_mu$ and account for the relic abundance. The experimental constraints and perturbativity considerations exclude all such models, apart from a few fine-tuned regions in the parameter space, with new states in the few 100 GeV range. In the models with new Higgs couplings, the new states can be parametrically heavier by a factor $sqrt{1/y_mu}$, with $y_mu$ the muon Yukawa coupling, resulting in masses for the new states in the TeV regime. At present these models are not well constrained experimentally, which we illustrate on two representative examples.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا