Do you want to publish a course? Click here

Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmion at room temperature

180   0   0.0 ( 0 )
 Added by Benoit Pilorget
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films where the cobalt layer is sandwiched between two heavy metals providing additive interfacial Dzyaloshinskii-Moriya interactions, which reach a value close to 2 mJ m-2 in the case of the Ir|Co|Pt asymmetric multilayers. Using a magnetization-sensitive scanning x-ray transmission microscopy technique, we imaged small magnetic domains at very low field in these multilayers. The study of their behavior in perpendicular magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the large Dzyaloshinskii-Moriya interaction. This discovery of stable sub-100 nm individual skyrmions at room temperature in a technologically relevant material opens the way for device applications in a near future.



rate research

Read More

We present first room-temperature thermoelectric signature of the skyrmion lattice. This was observed in Fe3Sn2, a Kagome Dirac crystal with massive Dirac fermions that features high-temperature skyrmion phase. The room-temperature skyrmion lattice shows magnetic-field dependence of the wavevector whereas thermopower is dominated by the electronic diffusion mechanism, allowing for the skyrmionic bubble lattice detection. Our results pave the way for the future skyrmion-based devices based on the manipulation of the thermal gradient.
Facing the ever-growing demand for data storage will most probably require a new paradigm. Magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films where the cobalt layer is sandwiched between two heavy metals providing additive interfacial Dzyaloshinskii-Moriya interactions, which reach about 2 mJ/m2 in the case of the Ir/Co/Pt multilayers. Using a magnetization-sensitive scanning x-ray transmission microscopy technique, we imaged magnetic bubble-like domains in these multilayers. The study of their behavir in magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the Dzyaloshinsskii-Moriya interaction. This discoevry of stable skyrmions at room temperature in a technologically relevant material opens the way for device applications in a near future.
Propagation character of spin wave was investigated for chiral magnets FeGe and Co-Zn-Mn alloys, which can host magnetic skyrmions near room temperature. On the basis of the frequency shift between counter-propagating spin waves, the magnitude and sign of Dzyaloshinskii-Moriya (DM) interaction were directly evaluated. The obtained magnetic parameters quantitatively account for the size and helicity of skyrmions as well as their materials variation, proving that the DM interaction plays a decisive role in the skyrmion formation in this class of room-temperature chiral magnets. The propagating spin-wave spectroscopy can thus be an efficient tool to study DM interaction in bulk single-phase compounds. Our results also demonstrate a function of spin-wave diode based on chiral crystal structures at room temperature.
106 - S. McVitie , S. Hughes , K. Fallon 2017
Skyrmions in ultrathin ferromagnetic metal (FM)/heavy metal (HM) multilayer systems produced by conventional sputtering methods have recently generated huge interest due to their applications in the field of spintronics. The sandwich structure with two correctly-chosen heavy metal layers provides an additive interfacial exchange interaction which promotes domain wall or skyrmion spin textures that are Neel in character and with a fixed chirality. Lorentz transmission electron microscopy (TEM) is a high resolution method ideally suited to quantitatively image such chiral magnetic configurations. When allied with physical and chemical TEM analysis of both planar and cross-sectional samples, key length scales such as grain size and the chiral variation of the magnetisation variation have been identified and measured. We present data showing the importance of the grain size (mostly < 10nm) measured from direct imaging and its potential role in describing observed behaviour of isolated skyrmions (diameter < 100nm). In the latter the region in which the magnetization rotates is measured to be around 30 nm. Such quantitative information on the multiscale magnetisation variations in the system is key to understanding and exploiting the behaviour of skyrmions for future device applications.
Topologically non trivial spin textures host great promise for future spintronic applications. Skyrmions in particular are of burgeoning interest owing to their nanometric size, topological protection, and high mobility via ultra-low current densities. It has been previously reported through magnetic susceptibility, microscopy, and scattering techniques that Co$_{8}$Zn$_{8}$Mn$_{4}$ forms an above room temperature triangular skyrmion lattice. Here we report the synthesis procedure and characterization of a polycrystalline Co$_{8}$Zn$_{8}$Mn$_{4}$ bulk sample. We employ powder x-ray diffraction, backscatter Laue diffraction, and neutron diffraction as characterization tools of the crystallinity of the samples, while magnetic susceptibility and Small Angle Neutron Scattering (SANS) measurements are performed to study the skyrmion phase. Magnetic susceptibility measurements show a dip anomaly in the magnetization curves which persists over a range of approximately 305 K- 315 K. SANS measurements reveal a rotationally disordered polydomain skymrion lattice. Applying a recently developed symmetry-breaking magnetic field sequence, we were able to orient and order the previously jammed state to yield the prototypical hexagonal diffraction patterns, with secondary diffraction rings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا