Do you want to publish a course? Click here

Signatures of an annular Fermi sea

60   0   0.0 ( 0 )
 Added by Insun Jo
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report Shubnikov-de Haas oscillations measurements revealing experimental signatures of an annular Fermi sea that develops near the energy band edge of the excited subband of two-dimensional holes confined in a wide GaAs quantum well. As we increase the hole density, when the Fermi level reaches the excited subband edge, the low-field magnetoresistance traces show a sudden emergence of new oscillations at an unexpectedly large frequency whose value does $textit{not}$ correspond to the (negligible) density of holes in the excited subband. There is also a sharp and significant increase in zero-field resistance near this onset of subband occupation. Guided by numerical energy dispersion calculations, we associate these observations with the unusual shape of the excited subband dispersion which results in a ring of extrema at finite wavevectors and an annular Fermi sea. Such a dispersion and Fermi sea have long been expected from energy band calculations in systems with strong spin-orbit interaction but their experimental signatures have been elusive.



rate research

Read More

209 - Ragheed Alhyder 2020
We present a variational calculation of the energy of an impurity immersed a double Fermi sea of non-interacting Fermions. We show that in the strong-coupling regime, the system undergoes a first order transition between polaronic and trimer states. Our result suggests that the smooth crossover predicted in previous literature for a superfluid background is the consequence of Cooper pairing and is absent in a normal system.
We study a system of a transition metal dichalcogenide (TMD) monolayer placed in an optical resonator, where strong light-matter coupling between excitons and photons is achieved. We present quantitative theory of the nonlinear optical response for exciton-polaritons for the case of doped TMD monolayer, and analyze in detail two sources of nonlinearity. The first nonlinear response contribution stems from the Coulomb exchange interaction between excitons. The second contribution comes from the reduction of Rabi splitting that originates from phase space filling at increased exciton concentration and the composite nature of excitons. We demonstrate that both nonlinear contributions are enhanced in the presence of free electrons. As free electron concentration can be routinely controlled by an externally applied gate voltage, this opens a way of electrical tuning of the nonlinear optical response.
111 - H. Duprez , E. Sivre , A. Anthore 2019
The Coulomb interaction generally limits the quantum propagation of electrons. However, it can also provide a mechanism to transfer their quantum state over larger distances. Here, we demonstrate such a form of teleportation, across a metallic island within which the electrons are trapped much longer than their quantum lifetime. This effect originates from the low temperature freezing of the islands charge $Q$ which, in the presence of a single connected electronic channel, enforces a one-to-one correspondence between incoming and outgoing electrons. Such high-fidelity quantum state imprinting is established between well-separated injection and emission locations, through two-path interferences in the integer quantum Hall regime. The added electron quantum phase of $2pi Q/e$ can allow for strong and decoherence-free entanglement of propagating electrons, and notably of flying qubits.
The recent observation [R. V. Gorbachev et al., Science {bf 346}, 448 (2014)] of nonlocal resistance $R_mathrm{NL}$ near the Dirac point (DP) of multiterminal graphene on aligned hexagonal boron nitride (G/hBN) has been interpreted as the consequence of topological valley Hall currents carried by the Fermi sea states just beneath the bulk gap $E_g$ induced by the inversion symmetry breaking. However, the valley Hall conductivity $sigma^v_{xy}$, quantized inside $E_g$, is not directly measurable. Conversely, the Landauer-B{u}ttiker formula, as numerically exact approach to observable nonlocal transport quantities, yields $R_mathrm{NL} equiv 0$ for the same simplistic Hamiltonian of gapped graphene that generates $sigma^v_{xy} eq 0$. We combine ab initio with quantum transport calculations to demonstrate that G/hBN wires with zigzag edges host dispersive edge states near the DP that are absent in theories based on the simplistic Hamiltonian. Although such edge states exist also in isolated zigzag graphene wires, aligned hBN is required to modify their energy-momentum dispersion and generate $R_mathrm{NL} eq 0$ near the DP persisting in the presence of edge disorder. Concurrently, the edge states resolve the long-standing puzzle of why the highly insulating state of G/hBN is rarely observed. We conclude that the observed $R_mathrm{NL}$ is unrelated to Fermi sea topological valley currents conjectured for gapped Dirac spectra.
The enigmatic even-denominator fractional quantum Hall state at Landau level filling factor $ u=5/2$ is arguably the most promising candidate for harboring Majorana quasi-particles with non-Abelian statistics and thus of potential use for topological quantum computing. The theoretical description of the $ u=5/2$ state is generally believed to involve a topological p-wave pairing of fully spin-polarized composite fermions through their condensation into a non-Abelian Moore-Read Pfaffian state. There is, however, no direct and conclusive experimental evidence for the existence of composite fermions near $ u=5/2$ or for an underlying fully spin-polarized Fermi sea. Here, we report the observation of composite fermions very near $ u=5/2$ through geometric resonance measurements, and find that the measured Fermi wavevector provides direct demonstration of a Fermi sea with full spin polarization. This lends crucial credence to the model of $5/2$ fractional quantum Hall effect as a topological p-wave paired state of composite fermions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا