Do you want to publish a course? Click here

Studies on charge production from Cs2Te photocathodes in the PITZ L-band normal conducting radio frequency photo injector

90   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper discusses the behavior of electron bunch charge produced in an L-band normal conducting radio frequency cavity (RF gun) from Cs2Te photocathodes illuminated with ps-long UV laser pulses when the laser transverse distribution consists of a flat-top core with Gaussian-like decaying halo. The produced charge shows a linear dependence at low laser pulse energies as expected in the quantum efficiency limited emission regime, while its dependence on laser pulse energy is observed to be much weaker for higher values, due to space charge limited emission. However, direct plug-in of experimental parameters into the space charge tracking code ASTRA yields lower output charge in the space charge limited regime compared to measured values. The rate of increase of the produced charge at high laser pulse energies close to the space charge limited emission regime seems to be proportional to the amount of halo present in the radial laser profile since the charge from the core has saturated already. By utilizing core + halo particle distributions based on measured radial laser profiles, ASTRA simulations and semi-analytical emission models reproduce the behavior of the measured charge for a wide range of RF gun and laser operational parameters within the measurement uncertainties.



rate research

Read More

117 - Fang Wang , Liwen Feng , Lin Lin 2014
A low level radio frequency (LLRF) control system is designed and constructed at Peking University, which is for the DC-SRF photo injector operating at 2K. Besides with continuous wave (CW), the system is also reliable with pulsed RF and pulsed beam, the stability of amplitude and phase can achieve 0.13% and 0.1{deg}respectively. It is worth noting that the system works perfectly when the cavity is driven at both generator driven resonator (GDR) and self-excited loop (SEL), the latter is useful in measuring the performance of the cavity.
Superconducting RF (SRF) photo-injectors are one of the most promising devices for generating continuous wave (CW) electron beams with record high brightness. Ultra-high vacuum of SRF guns provides for long lifetime of the high quantum efficiency (QE) photocathodes, while SRF technology provides for high accelerating gradients exceeding 10 MV/m. It is especially true for low frequency SRF guns where electrons are generated at photocathodes at the crest of accelerating voltage. Two main physics challenges of SRF guns are their compatibility with high QE photocathodes and multipacting. The first is related to a possibility of deposition of photocathode materials (such as Cs) on the walls of the SRF cavity, which can result in increased dark current via reduction of the bulk Nb work function and in enhancing of a secondary electron emission yield (SEY). SEY plays critical role in multipacting, which could both spoil the gun vacuum and speed up the deposition of the cathode material on the walls of the SRF cavity. In short, the multipactor behavior in superconducting accelerating units must be well understood for successful operation of an SRF photo-injector. In this paper we present our studies of 1.2 MV 113 MHz quarter-wave SRF photo-injector serving as a source of electron beam for the Coherent electron Cooling experiment (CeC) at BNL. During three years of operating our SRF gun we encountered a number of multipacting zones. We also observed that presence of $textrm{CsK}_{2}textrm{Sb}$ photocathode in the gun could create additional multipacting barriers. We had conducted a comprehensive numerical and experimental study of the multipactor discharge in our SRF gun, and had developed a process of crossing the multipacting barriers from zero to the operational voltage without affecting the lifetime of our photocathode and enhancing the strength of multipacting barriers.
At EuPRAXIA@SPARC_LAB, the unique combination of an advanced high-brightness RF injector and a plasma-based accelerator will drive a new multi-disciplinary user-facility. The facility, that is currently under study at INFN-LNF Laboratories (Frascati, Italy) in synergy with the EuPRAXIA collaboration, will operate the plasma-based accelerator in the external injection configuration. Since in this configuration the stability and reproducibility of the acceleration process in the plasma stage is strongly influenced by the RF-generated electron beam, the main challenge for the RF injector design is related to generating and handling high quality electron beams. In the last decades of R&D activity, the crucial role of high-brightness RF photo-injectors in the fields of radiation generation and advanced acceleration schemes has been largely established, making them effective candidates to drive plasma-based accelerators as pilots for user facilities. An RF injector consisting in a high-brightness S-band photo-injector followed by an advanced X-band linac has been proposed for the EuPRAXIA@SPARC_LAB project. The electron beam dynamics in the photo-injector has been explored by means of simulations, resulting in high-brightness, ultra-short bunches with up to 3 kA peak current at the entrance of the advanced X-band linac booster. The EuPRAXIA@SPARC_LAB high-brightness photo-injector is described here together with performance optimisation and sensitivity studies aiming to actual check the robustness and reliability of the desired working point.
110 - J.E. Clendenin 2004
Future colliders such as NLC and JLC will require a highly-polarized macropulse with charge that is more than an order of magnitude beyond that which could be produced for the SLC. The maximum charge from the SLC uniformly-doped GaAs photocathode was limited by the surface charge limit (SCL). The SCL effect can be overcome by using an extremely high (>1019 cm-3) surface dopant concentration. When combined with a medium dopant concentration in the majority of the active layer (to avoid depolarization), the surface concentration has been found to degrade during normal heat cleaning (1 hour at 600 C). The Be dopant as typically used in an MBE-grown superlattice cathode is especially susceptible to this effect compared to Zn or C dopant. Some relief can be found by lowering the cleaning temperature, but the long-term general solution appears to be atomic hydrogen cleaning.
A new scheme to produce very low emittance muon beams using a positron beam of about 45~GeV interacting on electrons on target is presented. One of the innovative topics to be investigated is the behaviour of the positron beam stored in a low emittance ring with a thin target, that is directly inserted in the ring chamber to produce muons. Muons can be immediately collected at the exit of the target and transported to two $mu^+$ and $mu^-$ accumulator rings and then accelerated and injected in muon collider rings. We focus in this paper on the simulation of the e$^+$ beam interacting with the target, the effect of the target on the 6-D phase space and the optimization of the e$^+$ ring design to maximize the energy acceptance. We will investigate the performance of this scheme, ring plus target system, comparing different multi-turn simulations. The source is considered for use in a multi-TeV collider in ref.[1]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا