Do you want to publish a course? Click here

Statistical Study of GOES X-ray Quasi-Periodic Pulsations in Solar Flares

100   0   0.0 ( 0 )
 Added by Laura. A Hayes PhD
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Small amplitude quasi-periodic pulsations (QPPs) detected in soft X-ray emission are commonplace in many flares. To date, the underpinning processes resulting in the QPPs are unknown. In this paper, we attempt to constrain the prevalence of textit{stationary} QPPs in the largest statistical study to date, including a study of the relationship of QPP periods to the properties of the flaring active region, flare ribbons, and CME affiliation. We build upon the work of cite{inglis2016} and use a model comparison test to search for significant power in the Fourier spectra of lightcurves of the GOES 1--8~AA channel. We analyze all X-, M- and C- class flares of the past solar cycle, a total of 5519 flares, and search for periodicity in the 6-300~s timescale range. Approximately 46% of X-class, 29% of M-class and 7% of C-class flares show evidence of stationary QPPs, with periods that follow a log-normal distribution peaked at 20~s. The QPP periods were found to be independent of flare magnitude, however a positive correlation was found between QPP period and flare duration. No dependence of the QPP periods to the global active region properties was identified. A positive correlation was found between QPPs and ribbon properties including unsigned magnetic flux, ribbon area and ribbon separation distance. We found that both flares with and without an associated CME can host QPPs. Furthermore, we demonstrate that for X- and M- class flares, decay phase QPPs have statistically longer periods than impulsive phase QPPs.



rate research

Read More

The nature of quasi-periodic pulsations in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with quasi-periodic pulsations in solar flares, focusing on the 1 - 300s timescale. We analyse 675 M- and X-class flares observed by GOES in 1-8AA soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyse Fermi/GBM 15-25 keV X-ray data for each of these flares that was associated with a Fermi/GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that ~30% of GOES events and ~8% of Fermi/GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic timescale of ~5-30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic timescales in both GBM and GOES datasets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.
126 - Lei Lu , Dong Li , Zongjun Ning 2021
We report quasi-periodic pulsations (QPPs) with double periods during three solar flares (viz. SOL2011-Feb-15T01:44, SOL2011-Sep-25T04:31, SOL2012-May-17T01:25). The flare QPPs were observed from light curves in Ly$alpha$, hard X-ray (HXR) and microwave emissions, with the Ly$alpha$ emission recorded by the Geostationary Operational Environmental Satellite, the HXR emission recorded by the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Fermi Gamma-ray Burst Monitor, and the microwave emission recorded by the Nobeyama Radio Polarimeters and Radioheliograph. By using the Markov chain Monte Carlo (MCMC) method, QPPs with double periods of about two minutes and one minute were first found in the Ly$alpha$ emission. Then using the same method, a QPP with nearly the same period of about two minutes was also found in HXR and microwave emissions. Considering the possible common origin (nonthermal electrons) between Ly$alpha$ and HXR/microwave emission, we suggest that the two-minute QPP results from the periodic acceleration of nonthermal electrons during magnetic reconnections. The ratio between the double periods in the Ly$alpha$ emission was found to be close to two, which is consistent with the theoretical expectation between the fundamental and harmonic modes. However, we cannot rule out other possible driving mechanisms for the one-minute QPPs in HXR/microwave emissions due to their relatively large deviations.
Solar flares often display pulsating and oscillatory signatures in the emission, known as quasi-periodic pulsations (QPP). QPP are typically identified during the impulsive phase of flares, yet in some cases, their presence is detected late into the decay phase. Here, we report extensive fine structure QPP that are detected throughout the large X8.2 flare from 2017 September 10. Following the analysis of the thermal pulsations observed in the GOES/XRS and the 131 A channel of SDO/AIA, we find a pulsation period of ~65 s during the impulsive phase followed by lower amplitude QPP with a period of ~150 s in the decay phase, up to three hours after the peak of the flare. We find that during the time of the impulsive QPP, the soft X-ray source observed with RHESSI rapidly rises at a velocity of approximately 17 km/s following the plasmoid/coronal mass ejection (CME) eruption. We interpret these QPP in terms of a manifestation of the reconnection dynamics in the eruptive event. During the long-duration decay phase lasting several hours, extended downward contractions of collapsing loops/plasmoids that reach the top of the flare arcade are observed in EUV. We note that the existence of persistent QPP into the decay phase of this flare are most likely related to these features. The QPP during this phase are discussed in terms of MHD wave modes triggered in the post-flaring loops.
260 - M. Tomczak , Z. Szaforz 2014
We present a case study of the solar flare (SOL2001-10-02T17:31) that showed quasi-periodic pulsations (QPPs) in hard X-rays with two simultaneously excited periods, P_1 = 26-31 s and P_2 = 110 s. Complete evolution of the flare recorded by the Yohkoh telescopes, together with the patrol SOHO/EIT images, allowed us to identify magnetic structures responsible for particular periods and to propose an overall scenario which is consistent with the available observations. Namely, we suggest that emerging magnetic flux initiated the reconnection with legs of a large arcade of coronal loops that had been present in an active region for several days. The reconnection excited MHD oscillations in both magnetic structures simultaneously: period P_1 was generated in the emerging loop and in a loop being a result of the reconnection; period P_2 occurred in the arcade. Both resonators produced photons of different spectra. We anticipate that multiperiodicity in hard X-rays can be a common feature of flare hybrids, i.e. the events, in which magnetic structures of different sizes interact.
We describe microwave and hard X-ray observations of strong quasiperiodic pulsations from the GOES X1.3 solar flare on 15 June 2003. The radio observations were made jointly by the Owens Valley Solar Array (OVSA), the Nobeyama Polarimeter (NoRP), and the Nobeyama Radioheliograph (NoRH). Hard X-ray observations were made by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Using Fourier analysis, we study the frequency- and energy-dependent oscillation periods, differential phase, and modulation amplitudes of the radio and X-ray pulsations. Focusing on the more complete radio observations, we also examine the modulation of the degree of circular polarization and of the radio spectral index. The observed properties of the oscillations are compared with those derived from two simple models for the radio emission. In particular, we explicitly fit the observed modulation amplitude data to the two competing models. The first model considers the effects of MHD oscillations on the radio emission. The second model considers the quasi-periodic injection of fast electrons. We demonstrate that quasiperiodic acceleration and injection of fast electrons is the more likely cause of the quasiperiodic oscillations observed in the radio and hard X-ray emission, which has important implications for particle acceleration and transport in the flaring sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا