Do you want to publish a course? Click here

High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature

245   0   0.0 ( 0 )
 Added by Niall McEvoy
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Layered two-dimensional (2D) materials display great potential for a range of applications, particularly in electronics. We report the large-scale synthesis of thin films of platinum diselenide (PtSe2), a thus far scarcely investigated transition metal dichalcogenide. Importantly, the synthesis by thermal assisted conversion is performed at 400 {deg}C, representing a breakthrough for the direct integration of this novel material with silicon (Si) technology. Besides the thorough characterization of this new 2D material, we demonstrate its promise for applications in high-performance gas sensing with extremely short response and recovery times observed due to the 2D nature of the films. Furthermore, we realized vertically-stacked heterostructures of PtSe2 on Si which act as both photodiodes and photovoltaic cells. Thus this study establishes PtSe2 as a potential candidate for next-generation sensors and (opto-)electronic devices, using fabrication protocols compatible with established Si technologies.



rate research

Read More

Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we report the first successful layer-by-layer growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and X-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films for investigating the physical properties and potential applications of PtSe2.
Few-layer PtSe2 films are promising candidates for applications in high-speed electronics, spintronics and photodetectors. Reproducible fabrication of large-area highly crystalline films is, however, still a challenge. Here, we report the fabrication of epitaxially aligned PtSe2 films using one-zone selenization of pre-sputtered platinum layers. We have studied the influence of the growth conditions on the structural and electrical properties of the films prepared from Pt layers with different initial thickness. The best results were obtained for PtSe2 layers grown at elevated temperatures (600 {deg}C). The films exhibit signatures for a long-range in-plane ordering resembling an epitaxial growth. Charge carrier mobility determined by Hall-effect measurements is up to 24 cm2/V.s in these films.
There is a renewed interest in photovoltaic solar thermal (PVT) hybrid systems, which harvest solar energy for heat and electricity. Typically, a main focus of a PVT system is to cool the photovoltaic (PV) cells to improve the electrical performance, however, this causes the thermal component to under-perform compared to a solar thermal collector. The low temperature coefficients of amorphous silicon (a-Si:H) allow for the PV cells to be operated at higher temperatures and are a potential candidate for a more symbiotic PVT system. The fundamental challenge of a-Si:H PV is light-induced degradation known as the Staebler-Wronski effect (SWE). Fortunately, SWE is reversible and the a-Si:H PV efficiency can be returned to its initial state if the cell is annealed. Thus an opportunity exists to deposit a-Si:H directly on the solar thermal absorber plate where the cells could reach the high temperatures required for annealing. In this study, this opportunity is explored experimentally. First a-Si:H PV cells were annealed for 1 hour at 100degreeC on a 12 hour cycle and for the remaining time the cells were degraded at 50degreeC in order to simulate stagnation of a PVT system for 1 hour once a day. It was found that, when comparing the cells after stabilization at normal 50degreeC degradation, this annealing sequence resulted in a 10.6% energy gain when compared to a cell that was only degraded at 50degreeC.
We investigate a vertically-stacked hybrid photodiode consisting of a thin n-type molybdenum disulfide (MoS$_{2}$) layer transferred onto p-type silicon. The fabrication is scalable as the MoS$_{2}$ is grown by a controlled and tunable vapor phase sulfurization process. The obtained large-scale p-n heterojunction diodes exhibit notable photoconductivity which can be tuned by modifying the thickness of the MoS$_{2}$ layer. The diodes have a broad spectral response due to direct and indirect band transitions of the nanoscale MoS$_{2}$. Further, we observe a blue-shift of the spectral response into the visible range. The results are a significant step towards scalable fabrication of vertical devices from two-dimensional materials and constitute a new paradigm for materials engineering.
Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)6 as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm-2 and a partial pressure ratio of O2 to Cr(CO)6 of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s-1 and mean particle sizes of 1.85 {mu}m were measured for these films.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا