Do you want to publish a course? Click here

High carrier mobility epitaxially aligned PtSe2 films grown by one-zone selenization

113   0   0.0 ( 0 )
 Added by Igor Pis
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Few-layer PtSe2 films are promising candidates for applications in high-speed electronics, spintronics and photodetectors. Reproducible fabrication of large-area highly crystalline films is, however, still a challenge. Here, we report the fabrication of epitaxially aligned PtSe2 films using one-zone selenization of pre-sputtered platinum layers. We have studied the influence of the growth conditions on the structural and electrical properties of the films prepared from Pt layers with different initial thickness. The best results were obtained for PtSe2 layers grown at elevated temperatures (600 {deg}C). The films exhibit signatures for a long-range in-plane ordering resembling an epitaxial growth. Charge carrier mobility determined by Hall-effect measurements is up to 24 cm2/V.s in these films.



rate research

Read More

PtSe2 is attracting considerable attention as a high mobility two-dimensional material with envisionned applications in microelectronics, photodetection and spintronics. The growth of high quality PtSe2 on insulating substrates with wafer-scale uniformity is a prerequisite for electronic transport investigations and practical use in devices. Here, we report the growth of highly oriented few-layers PtSe2 on ZnO(0001) by molecular beam epitaxy. The crystalline structure of the films is characterized with electron and X-ray diffraction, atomic force microscopy and transmission electron microscopy. The comparison with PtSe2 layers grown on graphene, sapphire, mica, SiO2 and Pt(111) shows that among insulating substrates, ZnO(0001) yields films of superior structural quality. Hall measurements performed on epitaxial ZnO/PtSe2 with 5 monolayers of PtSe2 show a clear semiconducting behaviour and a high mobility in excess of 200 cm2V 1s-1 at room temperature and up to 447 cm2V-1s-1 at low temperature.
Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we report the first successful layer-by-layer growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and X-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films for investigating the physical properties and potential applications of PtSe2.
Layered two-dimensional (2D) materials display great potential for a range of applications, particularly in electronics. We report the large-scale synthesis of thin films of platinum diselenide (PtSe2), a thus far scarcely investigated transition metal dichalcogenide. Importantly, the synthesis by thermal assisted conversion is performed at 400 {deg}C, representing a breakthrough for the direct integration of this novel material with silicon (Si) technology. Besides the thorough characterization of this new 2D material, we demonstrate its promise for applications in high-performance gas sensing with extremely short response and recovery times observed due to the 2D nature of the films. Furthermore, we realized vertically-stacked heterostructures of PtSe2 on Si which act as both photodiodes and photovoltaic cells. Thus this study establishes PtSe2 as a potential candidate for next-generation sensors and (opto-)electronic devices, using fabrication protocols compatible with established Si technologies.
Thin films of TbMnO3 have been grown on SrTiO3 substrates. The films grow under compressive strain and are only partially clamped to the substrate. This produces remarkable changes in the magnetic properties and, unlike the bulk material, the films display ferromagnetic interactions below the ordering temperature of ~40K. X-ray photoemission measurements in the films show that the Mn-3s splitting is 0.3eV larger than that of the bulk. Ab initio embedded cluster calculations yield Mn-3s splittings that are in agreement with the experiment and reveal that the larger observed values are due to a larger ionicity of the films.
As a unique perovskite transparent oxide semiconductor, high-mobility La-doped BaSnO3 films have been successfully synthesized by molecular beam epitaxy and pulsed laser deposition. However, it remains a big challenge for magnetron sputtering, a widely applied technique suitable for large-scale fabrication, to grow high-mobility La-doped BaSnO3 films. Here, we developed a method to synthesize high-mobility epitaxial La-doped BaSnO3 films (mobility up to 121 cm2V-1s-1 at the carrier density ~ 4.0 x 10^20 cm-3 at room temperature) directly on SrTiO3 single crystal substrates using high-pressure magnetron sputtering. The structural and electrical properties of the La-doped BaSnO3 films were characterized by combined high-resolution X-ray diffraction, X-ray photoemission spectroscopy, and temperature-dependent electrical transport measurements. The room temperature electron mobility of La-doped BaSnO3 films in this work is 2 to 4 times higher than the reported values of the films grown by magnetron sputtering. Moreover, in the high carrier density range (n > 3 x 10^20 cm-3), the electron mobility value of 121 cm2V-1s-1 in our work is among the highest values for all reported doped BaSnO3 films. It is revealed that high argon pressure during sputtering plays a vital role in stabilizing the fully relaxed films and inducing oxygen vacancies, which benefit the high mobility at room temperature. Our work provides an easy and economical way to massively synthesize high-mobility transparent conducting films for transparent electronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا