Do you want to publish a course? Click here

Cr2O3 thin films grown at room temperature by low pressure laser chemical vapour deposition

173   0   0.0 ( 0 )
 Added by A. J. Silvestre
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)6 as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm-2 and a partial pressure ratio of O2 to Cr(CO)6 of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s-1 and mean particle sizes of 1.85 {mu}m were measured for these films.



rate research

Read More

We examine different cases of heterostructures consisting of WS2 monolayers grown by chemical vapor deposition (CVD) as the optically active material. We show that the degree of valley polarization of WS2 is considerably influenced by the material type used to form the heterostructure. Our results suggest the interaction between WS2 and graphene (WS2/Gr) has a strong effect on the temperature dependent depolarization (i.e. decrease of polarization with increasing temperature), with polarization degrees reaching 24% at room temperature under near-resonant excitation. This contrasts to hBN- encapsulated WS2, which exhibits a room temperature polarization degree of only 11%. The observed low depolarization rate in WS2/Gr heterostructure is attributed to the nearly temperature independent scattering rate due to phonons and fast charge and energy transfer processes from WS2 to graphene. Significant variations in the degree of polarization are also observed at 4K between the different heterostructure configurations. Intervalley hole scattering in the valence band proximity between the K and {Gamma} points of WS2 is sensitive to the immediate environment, leading to the observed variations.
132 - K. Chen , M. Veldhorst , C.H. Lee 2011
A Hybrid Physical-Chemical Vapour Deposition (HPCVD) system consisting of separately controlled Mg-source heater and substrate heater is used to grow MgB2 thin films and thick films at various temperatures. We are able to grow superconducting MgB2 thin films at temperatures as low as 350 C with a Tc0 of 35.5 K. MgB2 films up to 4 um in thickness grown at 550 C have Jc over 10E6 A/cm2 at 5 K and zero applied field. The low deposition temperature of MgB2 films is desirable for all-MgB2 tunnel junctions and MgB2 thick films are important for applications in coated conductors.
189 - X. P. Zhang , Y. S. Xiao , H. Zhou 2005
In this paper, we report the growth of NaxCoO2 thin films by pulsed-laser deposition (PLD). It is shown that the concentration of sodium is very sensitive to the substrate temperature and the target-substrate distance due to the evaporation of sodium during the deposition. alpha prime-phase Na0.75CoO2 and gamma- phase Na0.71CoO2 thin films can be obtained with different conditions. Correspondingly, the surface morphology of the films changes from flake-like to particle-like. The temperature dependence of resistivity for the films prepared with the optimal condition shows metallic behavior, consistent with the data of NaxCoO2 single crystals. This work demonstrates that PLD is a promising technique to get high quality NaxCoO2 thin films.
Control of thin film stoichiometry is of primary relevance to achieve desired functionality. Pulsed laser deposition ablating from binary-oxide targets (sequential deposition) can be applied to precisely control the film composition, offsetting the importance of growth conditions on the film stoichiometry. In this work, we demonstrate that the cation stoichiometry of SrTiO$_3$ thin films can be finely tuned by sequential deposition from SrO and TiO$_2$ targets. Homoepitaxial SrTiO$_3$ films were deposited at different substrate temperatures and Ti/Sr pulse ratios, allowing the establishment of a growth window for stoichiometric SrTiO$_3$. The growth kinetics and nucleation processes were studied by reflection high-energy electron diffraction and atomic force microscopy, providing information about the growth mode and the degree of off-stoichiometry. At the optimal (stoichiometric) growth conditions, films exhibit atomically flat surfaces, whereas off-stoichiometry is accommodated by crystal defects, 3D islands and/or surface precipitates depending on the substrate temperature and the excess cation. This technique opens the way to precisely control stoichiometry and doping of oxide thin films.
The outstanding electrical and mechanical properties of graphene make it very attractive for several applications, Nanoelectronics above all. However a reproducible and non destructive way to produce high quality, large-scale area, single layer graphene sheets is still lacking. Chemical Vapour Deposition of graphene on Cu catalytic thin films represents a promising method to reach this goal, because of the low temperatures (T < 900 Celsius degrees) involved during the process and of the theoretically expected monolayer self-limiting growth. On the contrary such self-limiting growth is not commonly observed in experiments, thus making the development of techniques allowing for a better control of graphene growth highly desirable. Here we report about the local ablation effect, arising in Raman analysis, due to the heat transfer induced by the laser incident beam onto the graphene sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا