Do you want to publish a course? Click here

Strain-controlled fundamental gap and structure of bulk black phosphorus

350   0   0.0 ( 0 )
 Added by Jie Guan
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study theoretically the structural and electronic response of layered bulk black phosphorus to in-layer strain. Ab initio density functional theory (DFT) calculations reveal that the strain energy and interlayer spacing display a strong anisotropy with respect to the uniaxial strain direction. To correctly describe the dependence of the fundamental band gap on strain, we used the computationally more involved GW quasiparticle approach that is free of parameters and superior to DFT studies, which are known to underestimate gap energies. We find that the band gap depends sensitively on the in-layer strain and even vanishes at compressive strain values exceeding about 2%, thus suggesting a possible application of black P in strain-controlled infrared devices.



rate research

Read More

To date, the intrinsic thermal conductivity tensor of bulk black phosphorus (BP), an important 2D material, is still unknown, since recent studies focus on BP flakes not on bulk BP. Here we report the anisotropic thermal conductivity tensor of bulk BP, for temperature range 80 - 300 K. Our measurements are similar to prior measurements on submicron BP flakes along zigzag and armchair axes, but are >25% higher in the through-plane axis, suggesting that phonon mean-free-paths are substantially longer in the through-plane direction. We find that despite the anisotropy in thermal conductivity, phonons are predominantly scattered by the same Umklapp processes in all directions. We also find that the phonon relaxation time is rather isotropic in the basal planes, but is highly anisotropic in the through-plane direction. Our work advances fundamental knowledge of anisotropic scattering of phonons in BP and is an important benchmark for future studies on thermal properties of BP nanostructures.
Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for opto-electronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the charge transport in black phosphorus at room temperature; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs). The effect opens up opportunities for future development of electro-mechanical transducers based on black phosphorus, and we demonstrate strain gauges constructed from black phosphorus thin crystals.
We report that mono-elemental black phosphorus presents a new electronic self-passivation scheme of single vacancy (SV). By means of low-temperature scanning tunneling microscopy and bond-resolved non-contact atomic force microscopy, we demonstrate that the local reconstruction and ionization of SV into negatively charged $mathrm{SV}^-$ leads to the passivation of dangling bonds and thus the quenching of in-gap states, which can be achieved by mild thermal annealing or STM tip manipulation. SV exhibits a strong and symmetric Friedel oscillation (FO) pattern, while $mathrm{SV}^-$ shows an asymmetric FO pattern with local perturbation amplitude reduced by one order of magnitude and a faster decay rate. The enhanced passivation by forming $mathrm{SV}^-$ can be attributed to its weak dipole-like perturbation, consistent with density-functional theory and numerical calculations. Therefore, self-passivated $mathrm{SV}^-$ is electronically benign and acts as a much weaker scattering center, which may hold the key to further enhance the charge mobility of BP and its analogs.
We report the anisotropic magneto-transport measurement on a non-compound band semiconductor black phosphorus (BP) with magnetic field B up to 16 Tesla applied in both perpendicular and parallel to electric current I under hydrostatic pressures. The BP undergoes a topological Lifshitz transition from band semiconductor to a zero-gap Dirac semimetal state, characterized by a weak localization-weak antilocaliation transition at low magnetic fields and the emergence of a nontrivial Berry Phase of detected by SdH magneto-oscillations in magnetoresistance curves. In the transition region, we observe a pressure-dependent negative MR only in the B//I configuration. This negative longitudinal MR is attributed to the Adler-Bell-Jackiw anomaly (topological E$cdot$B term) in the presence of weak antilocalization corrections.
Using the density functional theory of electronic structure, we compute the anisotropic dielectric response of bulk black phosphorus subject to strain. Employing the obtained permittivity tensor, we solve Maxwells equations and study the electromagnetic response of a layered structure comprising a film of black phosphorus stacked on a metallic substrate. Our results reveal that a small compressive or tensile strain, $sim 4%$, exerted either perpendicular or in the plane to the black phosphorus growth direction, efficiently controls the epsilon-near-zero response, and allows a perfect absorption tuning from low-angle of the incident beam $theta=0^circ$ to high values $thetaapprox 90^circ$ while switching the energy flow direction. Incorporating a spatially inhomogeneous strain model, we also find that for certain thicknesses of the black phosphorus, near-perfect absorption can be achieved through controlled variations of the in-plane strain. These findings can serve as guidelines for designing largely tunable perfect electromagnetic wave absorber devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا