Do you want to publish a course? Click here

A Portrait of Cold Gas in Galaxies at 60pc Resolution and a Simple Method to Test Hypotheses That Link Small-Scale ISM Structure to Galaxy-Scale Processes

83   0   0.0 ( 0 )
 Added by Adam Leroy
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cloud-scale density, velocity dispersion, and gravitational boundedness of the interstellar medium (ISM) vary within and among galaxies. In turbulent models, these properties play key roles in the ability of gas to form stars. New high fidelity, high resolution surveys offer the prospect to measure these quantities across galaxies. We present a simple approach to make such measurements and to test hypotheses that link small-scale gas structure to star formation and galactic environment. Our calculations capture the key physics of the Larson scaling relations, and we show good correspondence between our approach and a traditional cloud properties treatment. However, we argue that our method is preferable in many cases because of its simple, reproducible characterization of all emission. Using, low-J 12CO data from recent surveys, we characterize the molecular ISM at 60pc resolution in the Antennae, the Large Magellanic Cloud, M31, M33, M51, and M74. We report the distributions of surface density, velocity dispersion, and gravitational boundedness at 60pc scales and show galaxy-to-galaxy and intra-galaxy variations in each. The distribution of flux as a function of surface density appears roughly lognormal with a 1sigma width of ~0.3 dex, though the center of this distribution varies from galaxy to galaxy. The 60pc resolution line width and molecular gas surface density correlate well, which is a fundamental behavior expected for virialized or free-falling gas. Varying the measurement scale for the LMC and M31, we show that the molecular ISM has higher surface densities, lower line widths, and more self-gravity at smaller scales.



rate research

Read More

149 - F. Patat , N.L.J. Cox , J. Parrent 2010
AIMS. In this work we explore the possibility of using the fast expansion of a Type Ia supernova photosphere to detect extra-galactic ISM column density variations on spatial scales of ~100 AU on time scales of a few months. METHODS. We constructed a simple model which describes the expansion of the photodisk and the effects of a patchy interstellar cloud on the observed equivalent width of Na I D lines. Using this model we derived the behavior of the equivalent width as a function of time, spatial scale and amplitude of the column density fluctuations. RESULTS. The calculations show that isolated, small (<100 AU) clouds with Na I column densities exceeding a few 10^11 cm^-2 would be easily detected. In contrast, the effects of a more realistic, patchy ISM become measurable in a fraction of cases, and for peak-to-peak variations larger than ~10^12 cm^-2 on a scale of 1000 AU. CONCLUSIONS. The proposed technique provides a unique way to probe the extra-galactic small scale structure, which is out of reach for any of the methods used so far. The same tool can also be applied to study the sub-AU Galactic ISM structure.
We use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to explore the properties and origin of cold circumgalactic medium (CGM) gas around massive galaxies (M* > 10^11 Msun) at intermediate redshift (z~0.5). We discover a significant abundance of small-scale, cold gas structure in the CGM of red and dead elliptical systems, as traced by neutral HI and MgII. Halos can host tens of thousands of discrete absorbing cloudlets, with sizes of order a kpc or smaller. With a Lagrangian tracer analysis, we show that cold clouds form due to strong drho/rho >> 1 gas density perturbations which stimulate thermal instability. These local overdensities trigger rapid cooling from the hot virialized background medium at ~10^7 K to radiatively inefficient ~10^4 K clouds, which act as cosmologically long-lived, stimulated cooling seeds in a regime where the global halo does not satisfy the classic tcool/tff < 10 criterion. Furthermore, these small clouds are dominated by magnetic rather than thermal pressure, with plasma beta << 1, suggesting that magnetic fields may play an important role. The number and total mass of cold clouds both increase with resolution, and the ~8x10^4 Msun cell mass of TNG50 enables the ~few hundred pc, small-scale CGM structure we observe to form. Finally, we make a preliminary comparison against observations from the COS-LRG, LRG-RDR, COS-Halos, and SDSS LRG surveys. We broadly find that our recent, high-resolution cosmological simulations produce sufficiently high covering fractions of extended, cold gas as observed to surround massive galaxies.
We find that clouds of optically-thin, pressure-confined gas are prone to fragmentation as they cool below $sim10^6$ K. This fragmentation follows the lengthscale $sim{c}_{text{s}},t_{text{cool}}$, ultimately reaching very small scales ($sim{0.1} text{pc}/n$) as they reach the temperature $sim10^4$ K at which hydrogen recombines. While this lengthscale depends on the ambient pressure confining the clouds, we find that the column density through an individual fragment $N_{text{cloudlet}}sim10^{17} text{cm}^{-3}$ is essentially independent of environment; this column density represents a characteristic scale for atomic gas at $10^4$ K. We therefore suggest that clouds of cold, atomic gas may in fact have the structure of a mist or a fog, composed of tiny fragments dispersed throughout the ambient medium. We show that this scale emerges in hydrodynamic simulations, and that the corresponding increase in the surface area may imply rapid entrainment of cold gas. We also apply it to a number of observational puzzles, including the large covering fraction of diffuse gas in galaxy halos, the broad line widths seen in quasar and AGN spectra, and the entrainment of cold gas in galactic winds. While our simulations make a number of assumptions and thus have associated uncertainties, we show that this characteristic scale is consistent with a number of observations, across a wide range of astrophysical environments. We discuss future steps for testing, improving, and extending our model.
We present ALMA and MUSE observations of the Brightest Cluster Galaxy in Abell 2597, a nearby (z=0.0821) cool core cluster of galaxies. The data map the kinematics of a three billion solar mass filamentary nebula that spans the innermost 30 kpc of the galaxys core. Its warm ionized and cold molecular components are both cospatial and comoving, consistent with the hypothesis that the optical nebula traces the warm envelopes of many cold molecular clouds that drift in the velocity field of the hot X-ray atmosphere. The clouds are not in dynamical equilibrium, and instead show evidence for inflow toward the central supermassive black hole, outflow along the jets it launches, and uplift by the buoyant hot bubbles those jets inflate. The entire scenario is therefore consistent with a galaxy-spanning fountain, wherein cold gas clouds drain into the black hole accretion reservoir, powering jets and bubbles that uplift a cooling plume of low-entropy multiphase gas, which may stimulate additional cooling and accretion as part of a self-regulating feedback loop. All velocities are below the escape speed from the galaxy, and so these clouds should rain back toward the galaxy center from which they came, keeping the fountain long-lived. The data are consistent with major predictions of chaotic cold accretion, precipitation, and stimulated feedback models, and may trace processes fundamental to galaxy evolution at effectively all mass scales.
116 - Joel N. Bregman 2003
Observations of extragalactic objects need to be corrected for Galactic absorption and this is often accomplished by using the measured 21 cm HI column. However, within the beam of the radio telescope there are variations in the HI column that can have important effects in interpreting absorption line studies and X-ray spectra at the softest energies. We examine the HI and DIRBE/IRAS data for lines of sight out of the Galaxy, which show evidence for HI variations in of up to a factor of three in 1 degree fields. Column density enhancements would preferentially absorb soft X-rays in spatially extended objects and we find evidence for this effect in the ROSAT PSPC observations of two bright clusters of galaxies, Abell 119 and Abell 2142. For clusters of galaxies, the failure to include column density fluctuations will lead to systematically incorrect fits to the X-ray data in the sense that there will appear to be a very soft X-ray excess. This may be one cause of the soft X-ray excess in clusters, since the magnitude of the effect is comparable to the observed values.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا