Do you want to publish a course? Click here

Resolving small-scale cold circumgalactic gas in TNG50

151   0   0.0 ( 0 )
 Added by Dylan Nelson
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to explore the properties and origin of cold circumgalactic medium (CGM) gas around massive galaxies (M* > 10^11 Msun) at intermediate redshift (z~0.5). We discover a significant abundance of small-scale, cold gas structure in the CGM of red and dead elliptical systems, as traced by neutral HI and MgII. Halos can host tens of thousands of discrete absorbing cloudlets, with sizes of order a kpc or smaller. With a Lagrangian tracer analysis, we show that cold clouds form due to strong drho/rho >> 1 gas density perturbations which stimulate thermal instability. These local overdensities trigger rapid cooling from the hot virialized background medium at ~10^7 K to radiatively inefficient ~10^4 K clouds, which act as cosmologically long-lived, stimulated cooling seeds in a regime where the global halo does not satisfy the classic tcool/tff < 10 criterion. Furthermore, these small clouds are dominated by magnetic rather than thermal pressure, with plasma beta << 1, suggesting that magnetic fields may play an important role. The number and total mass of cold clouds both increase with resolution, and the ~8x10^4 Msun cell mass of TNG50 enables the ~few hundred pc, small-scale CGM structure we observe to form. Finally, we make a preliminary comparison against observations from the COS-LRG, LRG-RDR, COS-Halos, and SDSS LRG surveys. We broadly find that our recent, high-resolution cosmological simulations produce sufficiently high covering fractions of extended, cold gas as observed to surround massive galaxies.



rate research

Read More

We outline theoretical predictions for extended emission from MgII, tracing cool ~10^4 K gas in the circumgalactic medium (CGM) of star-forming galaxies in the high-resolution TNG50 cosmological magnetohydrodynamical simulation. We synthesize surface brightness maps of this strong rest-frame ultraviolet metal emission doublet (2796, 2803), adopting the assumption that the resonant scattering of MgII can be neglected and connecting to recent and upcoming observations with the Keck/KCWI, VLT/MUSE, and BlueMUSE optical integral field unit spectrographs. Studying galaxies with stellar masses 7.5 < log(M*/M_sun) < 11 at redshifts z=0.3, 0.7, 1 and 2 we find that extended MgII halos in emission, similar to their Lyman-alpha counterparts, are ubiquitous across the galaxy population. Median surface brightness profiles exceed 10^-19 erg/s/cm^2/arcsec^2 in the central ~10s of kpc, and total halo MgII luminosity increases with mass for star-forming galaxies, reaching 10^40 erg/s for M* ~ 10^9.5 Msun. MgII halo sizes increase from a few kpc to > 20 kpc at the highest masses, and sizes are larger for halos in denser environments. MgII halos are highly structured, clumpy, and asymmetric, with isophotal axis ratio increasing with galaxy mass. Similarly, the amount and distribution of MgII emission depends on the star formation activity of the central galaxy. Kinematically, inflowing versus outflowing gas dominates the MgII luminosity at high and low galaxy masses, respectively, although the majority of MgII halo emission at z~0.7 traces near-equilibrium fountain flows and gas with non-negligible rotational support, rather than rapidly outflowing galactic winds.
Cold, non-self-gravitating clumps occur in various astrophysical systems, ranging from the interstellar and circumgalactic medium (CGM), to AGN outflows and solar coronal loops. Cold gas has diverse origins such as turbulent mixing or precipitation from hotter phases. We obtain the analytic solution for a steady pressure-driven 1-D cooling flow around cold over-densities, irrespective of their origin. Our solutions describe the slow and steady radiative cooling-driven local gas inflow in the saturated regime of nonlinear thermal instability in clouds, sheets and filaments. We use a simple two-fluid treatment to include magnetic fields as an additional polytropic fluid. To test the limits of applicability of these analytic solutions, we compare with the gas structure found in and around small-scale cold clouds in the CGM of massive halos in the TNG50 cosmological MHD simulation from the IllustrisTNG suite. Despite qualitative resemblance of the gas structure, we find that deviations from steady state, complex geometries and turbulence all add complexity beyond our analytic solutions. We derive an exact relation between the mass cooling rate ($dot{rm M}_{rm cool}$) and the radiative cooling rate ($dot{rm E}_{rm cool}$) for a steady cooling flow. A comparison with the TNG50 clouds shows that this cooling flow relation applies in a narrow temperature range around $rm sim 10^{4.5}$ K where the isobaric cooling time is the shortest. In general, turbulence and mixing, instead of radiative cooling, may dominate the transition of gas between different temperature phases.
We find that clouds of optically-thin, pressure-confined gas are prone to fragmentation as they cool below $sim10^6$ K. This fragmentation follows the lengthscale $sim{c}_{text{s}},t_{text{cool}}$, ultimately reaching very small scales ($sim{0.1} text{pc}/n$) as they reach the temperature $sim10^4$ K at which hydrogen recombines. While this lengthscale depends on the ambient pressure confining the clouds, we find that the column density through an individual fragment $N_{text{cloudlet}}sim10^{17} text{cm}^{-3}$ is essentially independent of environment; this column density represents a characteristic scale for atomic gas at $10^4$ K. We therefore suggest that clouds of cold, atomic gas may in fact have the structure of a mist or a fog, composed of tiny fragments dispersed throughout the ambient medium. We show that this scale emerges in hydrodynamic simulations, and that the corresponding increase in the surface area may imply rapid entrainment of cold gas. We also apply it to a number of observational puzzles, including the large covering fraction of diffuse gas in galaxy halos, the broad line widths seen in quasar and AGN spectra, and the entrainment of cold gas in galactic winds. While our simulations make a number of assumptions and thus have associated uncertainties, we show that this characteristic scale is consistent with a number of observations, across a wide range of astrophysical environments. We discuss future steps for testing, improving, and extending our model.
We present simulations from the new Figuring Out Gas & Galaxies in Enzo (FOGGIE) project. In contrast to most extant simulations of galaxy formation, which concentrate computational resources on galactic disks and spheroids with fluid and particle elements of fixed mass, the FOGGIE simulations focus on extreme spatial and mass resolution in the circumgalactic medium (CGM) surrounding galaxies. Using the Enzo code and a new refinement scheme, FOGGIE reaches spatial resolutions of 381 comoving $h^{-1}$ pc and resolves extremely low masses ($lesssim 1$--$100$ Msun out to 100 comoving $h^{-1}$ kpc from the central halo. At these resolutions, cloud and filament-like structures giving rise to simulated absorption are smaller, and better resolved, than the same structures simulated with standard density-dependent refinement. Most of the simulated absorption arises in identifiable and well-resolved structures with masses $lesssim 10^4$ Msun, well below the mass resolution of typical zoom simulations. However, integrated quantities such as mass surface density and ionic covering fractions change at only the $lesssim 30$% level as resolution is varied. This relatively small changes in projected quantities---even when the sizes and distribution of absorbing clouds change dramatically---indicate that commonly used observables provide only weak constraints on the physical structure of the underlying gas. Comparing the simulated absorption features to the KODIAQ (Keck Observatory Database of Ionized Absorption toward Quasars) survey of $z sim2$--$3.5$ Lyman limit systems, we show that high-resolution FOGGIE runs better resolve the internal kinematic structure of detected absorption, and better match the observed distribution of absorber properties. These results indicate that CGM resolution is key in properly testing simulations of galaxy evolution with circumgalactic observations.
74 - Bjorn Emonts 2019
The MAMMOTH-I Nebula at redshift 2.3 is one of the largest known Ly-alpha nebulae in the Universe, spanning ~440 kpc. Enormous Ly-alpha nebulae like MAMMOTH-I typically trace the densest and most active regions of galaxy formation. Using sensitive low-surface-brightness observations of CO(1-0) with the Very Large Array, we trace the cold molecular gas in the inner 150 kpc of the MAMMOTH-I Nebula. CO is found in four regions that are associated with either galaxies or groups of galaxies that lie inside the nebula. In three of the regions, the CO stretches up to ~30 kpc into the circum-galactic medium (CGM). In the centermost region, the CO has a very low velocity dispersion (FWHM$_{rm CO}$ ~ 85 km/s), indicating that this gas is dynamically cold. This dynamically cold gas coincides with diffuse restframe optical light in the CGM around a central group of galaxies, as discovered with the Hubble Space Telescope. We argue that this likely represents cooling of settled and enriched gas in the center of MAMMOTH-I. This implies that the dynamically cold gas in the CGM, rather than the obscured AGN, marks the core of the potential well of this Ly-alpha nebula. In total, the CO in the MAMMOTH-I Nebula traces a molecular gas mass of M$_{rm H2}$ ~ 1.4 ($alpha_{rm CO}$/3.6) $times$ 10$^{11}$ M$_{odot}$, with roughly 50% of the CO(1-0) emission found in the CGM. Our results add to the increasing evidence that extended reservoirs of molecular gas exist in the CGM of massive high-z galaxies and proto-clusters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا