Do you want to publish a course? Click here

Small-Scale structure in the Galactic ISM: Implications for Galaxy Cluster Studies

117   0   0.0 ( 0 )
 Added by John S. Arabadjis
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of extragalactic objects need to be corrected for Galactic absorption and this is often accomplished by using the measured 21 cm HI column. However, within the beam of the radio telescope there are variations in the HI column that can have important effects in interpreting absorption line studies and X-ray spectra at the softest energies. We examine the HI and DIRBE/IRAS data for lines of sight out of the Galaxy, which show evidence for HI variations in of up to a factor of three in 1 degree fields. Column density enhancements would preferentially absorb soft X-rays in spatially extended objects and we find evidence for this effect in the ROSAT PSPC observations of two bright clusters of galaxies, Abell 119 and Abell 2142. For clusters of galaxies, the failure to include column density fluctuations will lead to systematically incorrect fits to the X-ray data in the sense that there will appear to be a very soft X-ray excess. This may be one cause of the soft X-ray excess in clusters, since the magnitude of the effect is comparable to the observed values.



rate research

Read More

149 - F. Patat , N.L.J. Cox , J. Parrent 2010
AIMS. In this work we explore the possibility of using the fast expansion of a Type Ia supernova photosphere to detect extra-galactic ISM column density variations on spatial scales of ~100 AU on time scales of a few months. METHODS. We constructed a simple model which describes the expansion of the photodisk and the effects of a patchy interstellar cloud on the observed equivalent width of Na I D lines. Using this model we derived the behavior of the equivalent width as a function of time, spatial scale and amplitude of the column density fluctuations. RESULTS. The calculations show that isolated, small (<100 AU) clouds with Na I column densities exceeding a few 10^11 cm^-2 would be easily detected. In contrast, the effects of a more realistic, patchy ISM become measurable in a fraction of cases, and for peak-to-peak variations larger than ~10^12 cm^-2 on a scale of 1000 AU. CONCLUSIONS. The proposed technique provides a unique way to probe the extra-galactic small scale structure, which is out of reach for any of the methods used so far. The same tool can also be applied to study the sub-AU Galactic ISM structure.
We describe the use of pulsars to study small-scale neutral structure in the interstellar medium (ISM). Because pulsars are high velocity objects, the pulsar-Earth line of sight sweeps rapidly across the ISM. Multiepoch measurements of pulsar interstellar spectral line spectra therefore probe ISM structures on AU scales. We review pulsar measurements of small scale structure in HI and OH and compare these results with those obtained through other techniques.
We present multi-frequency polarization observations of the diffuse radio synchrotron background modulated by Faraday rotation, in two directions of positive latitude. No extended total intensity I is observed, which implies that total intensity has no structure on scales smaller than approximately a degree. Polarized intensity and polarization angle, however, show abundant small-scale structure on scales from arcminutes to degrees. Rotation Measure (RM) maps show coherent structure over many synthesized beams, but also abrupt large changes over one beam. RMs from polarized extragalactic point sources are correlated over the field in each of the two fields, indicating a galactic component to the RM, but show no correlation with the RM map of the diffuse radiation. The upper limit in structure in I puts constraints on the random and regular components of the magnetic field in the galactic interstellar medium and halo. The emission is partly depolarized so that the observed polarization mostly originates from a nearby part of the medium. This explains the lack of correlation between RM from diffuse emission and from extragalactic point sources as the latter is built up over the entire path length through the medium.
61 - L. Guzzo 2002
I review at the non-specialist level recent progress in the study of the large-scale structure of the Universe, covering the following areas: (1) Results from recently completed or ongoing redshift surveys of galaxies and X-ray clusters; (2) Measurements of the power spectrum of fluctuations approaching Gpc scales; (3) Redshift-space distortions and their cosmological use; (4) Structure at high redshifts and its connection to galaxy formation.
A study investigating a possible jet shape dependence on the charged event multiplicity was performed on collision samples generated by Monte-Carlo (MC) event generators PYTHIA and HIJING++. We calculated the integral jet shape and found a significant modification caused by multiple-parton interactions. By interchanging and enabling different model ingredients in the simulations and analyzing the results in several $p_T$ bins and event multiplicity classes, we found a characteristic jet size measure that was independent of the chosen tunes, settings, and jet reconstruction algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا