No Arabic abstract
We introduce a general model for the balance-sheet consistent valuation of interbank claims within an interconnected financial system. Our model represents an extension of clearing models of interdependent liabilities to account for the presence of uncertainty on banks external assets. At the same time, it also provides a natural extension of classic structural credit risk models to the case of an interconnected system. We characterize the existence and uniqueness of a valuation that maximises individual and total equity values for all banks. We apply our model to the assessment of systemic risk, and in particular for the case of stress-testing. Further, we provide a fixed-point algorithm to carry out the network valuation and the conditions for its convergence.
Following the financial crisis of 2007-2008, a deep analogy between the origins of instability in financial systems and complex ecosystems has been pointed out: in both cases, topological features of network structures influence how easily distress can spread within the system. However, in financial network models, the details of how financial institutions interact typically play a decisive role, and a general understanding of precisely how network topology creates instability remains lacking. Here we show how processes that are widely believed to stabilise the financial system, i.e. market integration and diversification, can actually drive it towards instability, as they contribute to create cyclical structures which tend to amplify financial distress, thereby undermining systemic stability and making large crises more likely. This result holds irrespective of the details of how institutions interact, showing that policy-relevant analysis of the factors affecting financial stability can be carried out while abstracting away from such details.
We model hierarchical cascades of failures among banks linked through an interdependent network. The interaction among banks include not only direct cross-holding, but also indirect dependency by holding mutual assets outside the banking system. Using data extracted from the European Banking Authority, we present the interdependency network composed of 48 banks and 21 asset classes. Since interbank exposures are not public, we first reconstruct the asset/liability cross-holding network using the aggregated claims. For the robustness, we employ three reconstruction methods, called $textit{Anan}$, $textit{Hal{}a}$ and $textit{Maxe}$. Then we combine the external portfolio holdings of each bank to compute the interdependency matrix. The interdependency network is much denser than the direct cross-holding network, showing the complex latent interaction among banks. Finally, we perform macroprudential stress tests for the European banking system, using the adverse scenario in EBA stress test as the initial shock. For different reconstructed networks, we illustrate the hierarchical cascades and show that the failure hierarchies are roughly the same except for a few banks, reflecting the overlapping portfolio holding accounts for the majority of defaults. Understanding the interdependency network and the hierarchy of the cascades should help to improve policy intervention and implement rescue strategy.
Interbank markets are often characterised in terms of a core-periphery network structure, with a highly interconnected core of banks holding the market together, and a periphery of banks connected mostly to the core but not internally. This paradigm has recently been challenged for short time scales, where interbank markets seem better characterised by a bipartite structure with more core-periphery connections than inside the core. Using a novel core-periphery detection method on the eMID interbank market, we enrich this picture by showing that the network is actually characterised by multiple core-periphery pairs. Moreover, a transition from core-periphery to bipartite structures occurs by shortening the temporal scale of data aggregation. We further show how the global financial crisis transformed the market, in terms of composition, multiplicity and internal organisation of core-periphery pairs. By unveiling such a fine-grained organisation and transformation of the interbank market, our method can find important applications in the understanding of how distress can propagate over financial networks.
A growing body of studies on systemic risk in financial markets has emphasized the key importance of taking into consideration the complex interconnections among financial institutions. Much effort has been put in modeling the contagion dynamics of financial shocks, and to assess the resilience of specific financial markets - either using real network data, reconstruction techniques or simple toy networks. Here we address the more general problem of how shock propagation dynamics depends on the topological details of the underlying network. To this end we consider different realistic network topologies, all consistent with balance sheets information obtained from real data on financial institutions. In particular, we consider networks of varying density and with different block structures, and diversify as well in the details of the shock propagation dynamics. We confirm that the systemic risk properties of a financial network are extremely sensitive to its network features. Our results can aid in the design of regulatory policies to improve the robustness of financial markets.
The role of Network Theory in the study of the financial crisis has been widely spotted in the latest years. It has been shown how the network topology and the dynamics running on top of it can trigger the outbreak of large systemic crisis. Following this methodological perspective we introduce here the Accounting Network, i.e. the network we can extract through vector similarities techniques from companies financial statements. We build the Accounting Network on a large database of worldwide banks in the period 2001-2013, covering the onset of the global financial crisis of mid-2007. After a careful data cleaning, we apply a quality check in the construction of the network, introducing a parameter (the Quality Ratio) capable of trading off the size of the sample (coverage) and the representativeness of the financial statements (accuracy). We compute several basic network statistics and check, with the Louvain community detection algorithm, for emerging communities of banks. Remarkably enough sensible regional aggregations show up with the Japanese and the US clusters dominating the community structure, although the presence of a geographically mixed community points to a gradual convergence of banks into similar supranational practices. Finally, a Principal Component Analysis procedure reveals the main economic components that influence communities heterogeneity. Even using the most basic vector similarity hypotheses on the composition of the financial statements, the signature of the financial crisis clearly arises across the years around 2008. We finally discuss how the Accounting Networks can be improved to reflect the best practices in the financial statement analysis.