Do you want to publish a course? Click here

Hierarchical contagions in the interdependent financial network

77   0   0.0 ( 0 )
 Added by Hai-Chuan Xu
 Publication date 2021
  fields Financial
and research's language is English




Ask ChatGPT about the research

We model hierarchical cascades of failures among banks linked through an interdependent network. The interaction among banks include not only direct cross-holding, but also indirect dependency by holding mutual assets outside the banking system. Using data extracted from the European Banking Authority, we present the interdependency network composed of 48 banks and 21 asset classes. Since interbank exposures are not public, we first reconstruct the asset/liability cross-holding network using the aggregated claims. For the robustness, we employ three reconstruction methods, called $textit{Anan}$, $textit{Hal{}a}$ and $textit{Maxe}$. Then we combine the external portfolio holdings of each bank to compute the interdependency matrix. The interdependency network is much denser than the direct cross-holding network, showing the complex latent interaction among banks. Finally, we perform macroprudential stress tests for the European banking system, using the adverse scenario in EBA stress test as the initial shock. For different reconstructed networks, we illustrate the hierarchical cascades and show that the failure hierarchies are roughly the same except for a few banks, reflecting the overlapping portfolio holding accounts for the majority of defaults. Understanding the interdependency network and the hierarchy of the cascades should help to improve policy intervention and implement rescue strategy.



rate research

Read More

We introduce a general model for the balance-sheet consistent valuation of interbank claims within an interconnected financial system. Our model represents an extension of clearing models of interdependent liabilities to account for the presence of uncertainty on banks external assets. At the same time, it also provides a natural extension of classic structural credit risk models to the case of an interconnected system. We characterize the existence and uniqueness of a valuation that maximises individual and total equity values for all banks. We apply our model to the assessment of systemic risk, and in particular for the case of stress-testing. Further, we provide a fixed-point algorithm to carry out the network valuation and the conditions for its convergence.
Propagation of balance-sheet or cash-flow insolvency across financial institutions may be modeled as a cascade process on a network representing their mutual exposures. We derive rigorous asymptotic results for the magnitude of contagion in a large financial network and give an analytical expression for the asymptotic fraction of defaults, in terms of network characteristics. Our results extend previous studies on contagion in random graphs to inhomogeneous directed graphs with a given degree sequence and arbitrary distribution of weights. We introduce a criterion for the resilience of a large financial network to the insolvency of a small group of financial institutions and quantify how contagion amplifies small shocks to the network. Our results emphasize the role played by contagious links and show that institutions which contribute most to network instability in case of default have both large connectivity and a large fraction of contagious links. The asymptotic results show good agreement with simulations for networks with realistic sizes.
Following the financial crisis of 2007-2008, a deep analogy between the origins of instability in financial systems and complex ecosystems has been pointed out: in both cases, topological features of network structures influence how easily distress can spread within the system. However, in financial network models, the details of how financial institutions interact typically play a decisive role, and a general understanding of precisely how network topology creates instability remains lacking. Here we show how processes that are widely believed to stabilise the financial system, i.e. market integration and diversification, can actually drive it towards instability, as they contribute to create cyclical structures which tend to amplify financial distress, thereby undermining systemic stability and making large crises more likely. This result holds irrespective of the details of how institutions interact, showing that policy-relevant analysis of the factors affecting financial stability can be carried out while abstracting away from such details.
Let $ X_{lambda_1},ldots,X_{lambda_n}$ be a set of dependent and non-negative random variables share a survival copula and let $Y_i= I_{p_i}X_{lambda_i}$, $i=1,ldots,n$, where $I_{p_1},ldots,I_{p_n}$ be independent Bernoulli random variables independent of $X_{lambda_i}$s, with ${rm E}[I_{p_i}]=p_i$, $i=1,ldots,n$. In actuarial sciences, $Y_i$ corresponds to the claim amount in a portfolio of risks. This paper considers comparing the smallest claim amounts from two sets of interdependent portfolios, in the sense of usual and likelihood ratio orders, when the variables in one set have the parameters $lambda_1,ldots,lambda_n$ and $p_1,ldots,p_n$ and the variables in the other set have the parameters $lambda^{*}_1,ldots,lambda^{*}_n$ and $p^*_1,ldots,p^*_n$. Also, we present some bounds for survival function of the smallest claim amount in a portfolio. To illustrate validity of the results, we serve some applicable models.
Financial markets are exposed to systemic risk, the risk that a substantial fraction of the system ceases to function and collapses. Systemic risk can propagate through different mechanisms and channels of contagion. One important form of financial contagion arises from indirect interconnections between financial institutions mediated by financial markets. This indirect interconnection occurs when financial institutions invest in common assets and is referred to as overlapping portfolios. In this work we quantify systemic risk from indirect interconnections between financial institutions. Having complete information of security holdings of major Mexican financial intermediaries and the ability to uniquely identify securities in their portfolios, allows us to represent the Mexican financial system as a bipartite network of securities and financial institutions. This makes it possible to quantify systemic risk arising from overlapping portfolios. We show that focusing only on direct exposures underestimates total systemic risk levels by up to 50%. By representing the financial system as a multi-layer network of direct exposures (default contagion) and indirect exposures (overlapping portfolios) we estimate the mutual influence of different channels of contagion. The method presented here is the first objective data-driven quantification of systemic risk on national scales that includes overlapping portfolios.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا