Do you want to publish a course? Click here

Hierarchy of orientational phases and axial anisotropies in the gauge theoretical description of generalized nematics

52   0   0.0 ( 0 )
 Added by Ke Liu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The paradigm of spontaneous symmetry breaking encompasses the breaking of the rotational symmetries $O(3)$ of isotropic space to a discrete subgroup, i.e. a three-dimensional point group. The subgroups form a rich hierarchy and allow for many different phases of matter with orientational order. Such spontaneous symmetry breaking occurs in nematic liquid crystals and a highlight of such anisotropic liquids are the uniaxial and biaxial nematics. Generalizing the familiar uniaxial and biaxial nematics to phases characterized by an arbitrary point group symmetry, referred to as emph{generalized nematics}, leads to a large hierarchy of phases and possible orientational phase transitions. We discuss how a particular class of nematic phase transitions related to axial point groups can be efficiently captured within a recently proposed gauge theoretical formulation of generalized nematics [K. Liu, J. Nissinen, R.-J. Slager, K. Wu, J. Zaanen, Phys. Rev. X {bf 6}, 041025 (2016)]. These transitions can be introduced in the model by considering anisotropic couplings that do not break any additional symmetries. By and large this generalizes the well-known uniaxial-biaxial nematic phase transition to any arbitrary axial point group in three dimensions. We find in particular that the generalized axial transitions are distinguished by two types of phase diagrams with intermediate vestigial orientational phases and that the window of the vestigial phase is intimately related to the amount of symmetry of the defining point group due to inherently growing fluctuations of the order parameter. This might explain the stability of the observed uniaxial-biaxial phases as compared to the yet to be observed other possible forms of generalized nematic order with higher point group symmetries.



rate research

Read More

We compare the spatial correlations of bond-breaking events and bond-orientational relaxation in a model two-dimensional liquid undergoing Newtonian dynamics. We find that the relaxation time of the bond-breaking correlation function is much longer than the relaxation time of the bond-orientational correlation function and self-intermediate scattering function. However, the relaxation time of the bond-orientational correlation function increases faster with decreasing temperature than the relaxation time of the bond-breaking correlation function and the self-intermediate scattering function. Moreover, the dynamic correlation length that characterizes the size of correlated bond-orientational relaxation grows faster with decreasing temperature than the dynamic correlation length that characterizes the size of correlated bond-breaking events. We also examine the ensemble-dependent and ensemble-independent dynamic susceptibilities for both bond-breaking correlations and bond-orientational correlations. We find that for both correlations, the ensemble-dependent and ensemble-independent susceptibilities exhibit a maximum at nearly the same time, and this maximum occurs at a time slightly shorter than the peak position of the dynamic correlation length.
We introduce a minimal model of solid-forming anisotropic molecules that displays, in thermal equilibrium, surface orientational order without bulk orientational order. The model reproduces the nonequilibrium behavior of recent experiments in that a bulk nonequilibrium structure grown by deposition contains regions of orientational order characteristic of the surface equilibrium. This order is deposited in general in a nonuniform way, because of the emergence of a growth-poisoning mechanism that causes equilibrated surfaces to grow slower than non-equilibrated surfaces. We use evolutionary methods to design oscillatory protocols able to grow nonequilibrium structures with uniform order, demonstrating the potential of protocol design for the fabrication of this class of materials.
Estimating the homogeneous ice nucleation rate from undercooled liquid water is at the same time crucial for understanding many important physical phenomena and technological applications, and challenging for both experiments and theory. From a theoretical point of view, difficulties arise due to the long time scales required, as well as the numerous nucleation pathways involved to form ice nuclei with different stacking disorders. We computed the homogeneous ice nucleation rate at a physically relevant undercooling for a single-site water model, taking into account the diffuse nature of ice-water interfaces, stacking disorders in ice nuclei, and the addition rate of particles to the critical nucleus.We disentangled and investigated the relative importance of all the terms, including interfacial free energy, entropic contributions and the kinetic prefactor, that contribute to the overall nucleation rate.There has been a long-standing discrepancy for the predicted homogeneous ice nucleation rates, and our estimate is faster by 9 orders of magnitude compared with previous literature values. Breaking down the problem into segments and considering each term carefully can help us understand where the discrepancy may come from and how to systematically improve the existing computational methods.
We simulate antiferromagnetic thin films. Dipole-dipole and antiferromagnetic exchange interactions as well as uniaxial and quadrupolar anisotropies are taken into account. Various phases unfold as the corresponding parameters, J, D and C, as well as the temperature T and the number n of film layers vary. We find (1) how the strength Delta_m of the anisotropy arising from dipole-dipole interactions varies with the number of layers m away from the films surface, with J and with n; (2) a unified phase diagram for all n-layer films and bulk systems; (3) a layer dependent spin reorientation (SR) phase in which spins rotate continuously as T, D, C and n vary; (4) that the ratio of the SR to the ordering temperature depends (approximately) on n only through (D+Delta/n)/C, and hardly on J; (5) a phase transformation between two different magnetic orderings, in which spin orientations may or may not change, for some values of J, by varying n.
282 - H.W.Diehl 2002
An introduction to the theory of critical behavior at Lifshitz points is given, and the recent progress made in applying the field-theoretic renormalization group (RG) approach to $phi^4$ $n$-vector models representing universality classes of $m$-axial Lifshitz points is surveyed. The origins of the difficulties that had hindered a full two-loop RG analysis near the upper critical dimension for more than 20 years and produced long-standing contradictory $epsilon$-expansion results are discussed. It is outlined how to cope with them. The pivotal role the considered class of continuum models might play in a systematic investigation of anisotropic scale invariance within the context of thermal equilibrium systems is emphasized. This could shed light on the question of whether anisotropic scale invariance implies an even larger invariance, as recently claimed in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا