Do you want to publish a course? Click here

Deposition control of model glasses with surface-mediated orientational order

56   0   0.0 ( 0 )
 Added by Stephen Whitelam
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a minimal model of solid-forming anisotropic molecules that displays, in thermal equilibrium, surface orientational order without bulk orientational order. The model reproduces the nonequilibrium behavior of recent experiments in that a bulk nonequilibrium structure grown by deposition contains regions of orientational order characteristic of the surface equilibrium. This order is deposited in general in a nonuniform way, because of the emergence of a growth-poisoning mechanism that causes equilibrated surfaces to grow slower than non-equilibrated surfaces. We use evolutionary methods to design oscillatory protocols able to grow nonequilibrium structures with uniform order, demonstrating the potential of protocol design for the fabrication of this class of materials.



rate research

Read More

We develop a fully microscopic, statistical mechanics approach to study phase transitions in Ising systems with competing interactions at different scales. Our aim is to consider orientational and positional order parameters in a unified framework. In this work we consider two dimensional stripe forming systems, where nematic, smectic and crystal phases are possible. We introduce a nematic order parameter in a lattice, which measures orientational order of interfaces. We develop a mean field approach which leads to a free energy which is a function of both the magnetization (density) and the orientational (nematic) order parameters. Self-consistent equations for the order parameters are obtained and the solutions are described for a particular system, the Dipolar Frustrated Ising Ferromagnet. We show that this system has an Ising-nematic phase at low temperatures in the square lattice, where positional order (staggered magnetization) is zero. At lower temperatures a crystal-stripe phase may appear. In the continuum limit the present approach connects to a Ginsburg-Landau theory, which has an isotropic-nematic phase transition with breaking of a continuous symmetry.
The paradigm of spontaneous symmetry breaking encompasses the breaking of the rotational symmetries $O(3)$ of isotropic space to a discrete subgroup, i.e. a three-dimensional point group. The subgroups form a rich hierarchy and allow for many different phases of matter with orientational order. Such spontaneous symmetry breaking occurs in nematic liquid crystals and a highlight of such anisotropic liquids are the uniaxial and biaxial nematics. Generalizing the familiar uniaxial and biaxial nematics to phases characterized by an arbitrary point group symmetry, referred to as emph{generalized nematics}, leads to a large hierarchy of phases and possible orientational phase transitions. We discuss how a particular class of nematic phase transitions related to axial point groups can be efficiently captured within a recently proposed gauge theoretical formulation of generalized nematics [K. Liu, J. Nissinen, R.-J. Slager, K. Wu, J. Zaanen, Phys. Rev. X {bf 6}, 041025 (2016)]. These transitions can be introduced in the model by considering anisotropic couplings that do not break any additional symmetries. By and large this generalizes the well-known uniaxial-biaxial nematic phase transition to any arbitrary axial point group in three dimensions. We find in particular that the generalized axial transitions are distinguished by two types of phase diagrams with intermediate vestigial orientational phases and that the window of the vestigial phase is intimately related to the amount of symmetry of the defining point group due to inherently growing fluctuations of the order parameter. This might explain the stability of the observed uniaxial-biaxial phases as compared to the yet to be observed other possible forms of generalized nematic order with higher point group symmetries.
We compare the spatial correlations of bond-breaking events and bond-orientational relaxation in a model two-dimensional liquid undergoing Newtonian dynamics. We find that the relaxation time of the bond-breaking correlation function is much longer than the relaxation time of the bond-orientational correlation function and self-intermediate scattering function. However, the relaxation time of the bond-orientational correlation function increases faster with decreasing temperature than the relaxation time of the bond-breaking correlation function and the self-intermediate scattering function. Moreover, the dynamic correlation length that characterizes the size of correlated bond-orientational relaxation grows faster with decreasing temperature than the dynamic correlation length that characterizes the size of correlated bond-breaking events. We also examine the ensemble-dependent and ensemble-independent dynamic susceptibilities for both bond-breaking correlations and bond-orientational correlations. We find that for both correlations, the ensemble-dependent and ensemble-independent susceptibilities exhibit a maximum at nearly the same time, and this maximum occurs at a time slightly shorter than the peak position of the dynamic correlation length.
The spin-3/2 Ising model, with nearest-neighbor interactions only, is the prototypical system with two different ordering species, with concentrations regulated by a chemical potential. Its global phase diagram, obtained in d=3 by renormalization-group theory in the Migdal-Kadanoff approximation or equivalently as an exact solution of a d=3 hierarchical lattice, with flows subtended by 40 different fixed points, presents a very rich structure containing eight different ordered and disordered phases, with more than fourteen different types of phase diagrams in temperature and chemical potential. It exhibits phases with orientational and/or positional order. It also exhibits quintuple phase transition reentrances. Universality of critical exponents is conserved across different renormalization-group flow basins, via redundant fixed points. One of the phase diagrams contains a plastic crystal sequence, with positional and orientational ordering encountered consecutively as temperature is lowered. The global phase diagram also contains double critical points, first-order and critical lines between two ordered phases, critical endpoints, usual and unusual (inverted) bicritical points, tricritical points, multiple tetracritical points, and zero-temperature criticality and bicriticality. The 4-state Potts permutation-symmetric subspace is contained in this model.
We study the dependence of the surface tension of a fluid interface on the density profile of a third suspended phase. By means of an approximated model for the binary mixture and of a perturbative approach we derive close formulas for the free energy of the system and for the surface tension of the interface. Our results show a remarkable non-monotonous dependence of the surface tension on the peak of the density of the suspended phase. Our results also predict the local value of the surface tension in the case in which the density of the suspended phase is not homogeneous along the interface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا