Do you want to publish a course? Click here

A revised model of fluid transport optimization in Physarum polycephalum

123   0   0.0 ( 0 )
 Added by Vincenzo Bonifaci
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Optimization of fluid transport in the slime mold Physarum polycephalum has been the subject of several modeling efforts in recent literature. Existing models assume that the tube adaptation mechanism in P. polycephalums tubular network is controlled by the sheer amount of fluid flow through the tubes. We put forward the hypothesis that the controlling variable may instead be the flows pressure gradient along the tube. We carry out the stability analysis of such a revised mathematical model for a parallel-edge network, proving that the revised model supports the global flow-optimizing behavior of the slime mold for a substantially wider class of response functions compared to previous models. Simulations also suggest that the same conclusion may be valid for arbitrary network topologies.



rate research

Read More

This paper introduces Polyphorm, an interactive visualization and model fitting tool that provides a novel approach for investigating cosmological datasets. Through a fast computational simulation method inspired by the behavior of Physarum polycephalum, an unicellular slime mold organism that efficiently forages for nutrients, astrophysicists are able to extrapolate from sparse datasets, such as galaxy maps archived in the Sloan Digital Sky Survey, and then use these extrapolations to inform analyses of a wide range of other data, such as spectroscopic observations captured by the Hubble Space Telescope. Researchers can interactively update the simulation by adjusting model parameters, and then investigate the resulting visual output to form hypotheses about the data. We describe details of Polyphorms simulation model and its interaction and visualization modalities, and we evaluate Polyphorm through three scientific use cases that demonstrate the effectiveness of our approach.
This paper presents a new method for modeling the mechanics of the aortic valve, and simulates its interaction with blood. As much as possible, the model construction is based on first principles, but such that the model is consistent with experimental observations. We require that tension in the leaflets must support a pressure, then derive a system of partial differential equations governing its mechanical equilibrium. The solution to these differential equations is referred to as the predicted loaded configuration; it includes the loaded leaflet geometry, fiber orientations and tensions needed to support the prescribed load. From this configuration, we derive a reference configuration and constitutive law. In fluid-structure interaction simulations with the immersed boundary method, the model seals reliably under physiological pressures, and opens freely over multiple cardiac cycles. Further, model closure is robust to extreme hypo- and hypertensive pressures. Then, exploiting the unique features of this model construction, we conduct experiments on reference configurations, constitutive laws, and gross morphology. These experiments suggest the following conclusions, which are directly applicable to the design of prosthetic aortic valves. (i) The loaded geometry, tensions and tangent moduli primarily determine model function. (ii) Alterations to the reference configuration have little effect if the predicted loaded configuration is identical. (iii) The leaflets must have sufficiently nonlinear material response to function over a variety of pressures. (iv) Valve performance is highly sensitive to free edge length and leaflet height. For future use, our aortic valve modeling framework offers flexibility in patient-specific models of cardiac flow.
Physarum Polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by biologists to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s0 and s1. We prove that, under this model, the mass of the mold will eventually converge to the shortest s0 - s1 path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by the biologists and can be seen as an example of a natural algorithm, that is, an algorithm developed by evolution over millions of years.
This paper addresses quantum circuit mapping for Noisy Intermediate-Scale Quantum (NISQ) computers. Since NISQ computers constraint two-qubit operations on limited couplings, an input circuit must be transformed into an equivalent output circuit obeying the constraints. The transformation often requires additional gates that can affect the accuracy of running the circuit. Based upon a previous work of quantum circuit mapping that leverages gate commutation rules, this paper shows algorithms that utilize both transformation and commutation rules. Experiments on a standard benchmark dataset confirm the algorithms with more rules can find even better circuit mappings compared with the previously-known best algorithms.
275 - Hongyi Li 2020
Objective: Interstitial fluid flow through vascular adventitia has been disclosed recently. However, its kinetic pattern was unclear. Methods and Results: We used histological and topographical identifications to observe ISF flow along venous vessels in rabbits. By MRI in alive subjects, the inherent ISF flow pathways in legs, abdomen and thorax were enhanced by paramagnetic contrast from ankle dermis. By fluorescence stereomicroscopy and layer-by-layer dissection after the rabbits were sacrificed, the perivascular and adventitial connective tissues (PACT) along the saphenous veins and inferior vena cava were found to be stained by sodium fluorescein from ankle dermis, which coincided with the findings by MRI. By confocal microscopy and histological analysis, the stained PACT pathways were verified to be the fibrous connective tissues and consisted of longitudinally assembled fibers. By usages of nanoparticles and surfactants, a PACT pathway was found to be accessible for a nanoparticle under 100nm and contain two parts: a tunica channel part and an absorptive part. In real-time observations, the calculated velocity of a continuous ISF flow along fibers of a PACT pathway was 3.6-15.6 mm/sec. Conclusion: These data further revealed more kinetic features of a continuous ISF flow along vascular vessel. A multiscale, multilayer, and multiform interstitial/interfacial fluid flow throughout perivascular and adventitial connective tissues was suggested as one of kinetic and dynamic mechanisms for ISF flow, which might be another principal fluid dynamic pattern besides convective/vascular and diffusive transport in biological system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا