We show that switching in ferroelectric lead germanate and lead iron tantalate zirconate titanate (PZTFT) does not resemble the equilibrium domain structure evolution of the Landau-Lifshitz-Kittel model but is instead highly nonequilibrium and similar, respectively, to the Richtmyer-Meshkov instability in liquids and the Helfrich-Hursault sliding instability in liquid crystals. The resulting nano-domain structures in PZTFT are circular or parabolic and involving folding bifurcations. These may have an undesirable impact on ferroelectric thin-film memoriesthat are also ferroelastic.
The behavior of antiferromagnetic domain wall (ADW) against the background of a periodic ferroelectric domain structure has been investigated. It has been shown that the structure and the energy of ADW change due to the interaction with a ferroelectric domain structure. The ferroelectric domain boundaries play the role of pins for magnetic spins, the spin density changes in the vicinity of ferroelectric walls. The ADW energy becomes a periodical function on a coordinate which is the position of ADW relative to the ferroelectric domain structure. It has been shown that the energy of the magnetic domain wall attains minimum values when the center of the ADW coincides with the ferroelectric wall and the periodic ferroelectric structure creates periodic coercitivity for the ADW. The neighbouring equilibrium states of the ADW are separated by a finite potential barrier.
In Mn$_3$X (X=Sn, Ge) antiferromagnets domain walls are thick and remarkably complex because of the non-collinear arrangement of spins in each domain. A planar Hall effect (PHE), an electric field perpendicular to the applied current but parallel to the applied magnetic field, was recently observed inside the hysteresis loop of Mn$_3$Sn. The sign of the PHE displayed a memory tuned by the prior orientation of the magnetic field and its history. We present a study of PHE in Mn$_3$Ge extended from room temperature down to 2 K and show that this memory effect can be manipulated by either magnetic field or thermal cycling. We show that the memory can be wiped out if the prior magnetic field exceeds 0.8 T or when the temperature exceeds $T_mathrm{N}$. We also find a detectable difference between the amplitude of PHE with zero-field and field thermal cycling. The ratio between the PHE and the anomalous Hall effect (AHE) decreases slightly as temperature is increased from 2 K to $T_{rm{N}}$, tracks the temperature dependence of magnetization. This erasable memory effect may be used for data storage.
Domains and domain walls are among the key factors that determine the performance of ferroelectric materials. In recent years, a unique type of domain walls, i.e., the sawtooth-shaped domain walls, has been observed in BiFeO$_{3}$ and PbTiO$_{3}$. Here, we build a minimal model to reveal the origin of these sawtooth-shaped domain walls. Incorporating this model into Monte-Carlo simulations shows that (i) the competition between the long-range Coulomb interaction (due to bound charges) and short-range interaction (due to opposite dipoles) is responsible for the formation of these peculiar domain walls and (ii) their relative strength is critical in determining the periodicity of these sawtooth-shaped domain walls. Necessary conditions to form such domain walls are also discussed.
The ease with which domain walls (DWs) in ferroelectric materials can be written and erased provides a versatile way to dynamically modulate heat fluxes. In this work we evaluate the thermal boundary resistance (TBR) of 180$^{circ}$ DWs in prototype ferroelectric perovskite PbTiO$_3$ within the numerical formalisms of nonequilibrium molecular dynamics and nonequilibrium Greens functions. An excellent agreement is obtained for the TBR of an isolated DW derived from both approaches, which reveals the harmonic character of the phonon-DW scattering mechanism. The thermal resistance of the ferroelectric material is shown to increase up to around 20%, in the system sizes here considered, due to the presence of a single DW, and larger resistances can be attained by incorporation of more DWs along the path of thermal flux. These results, obtained at device operation temperatures, prove the viability of an electrically actuated phononic switch based on ferroelectric DWs.
The control of domain walls or spin textures is crucial for spintronic applications of antiferromagnets. Despite many efforts, it has been challenging to directly visualize antiferromagnetic domains or domain walls with nanoscale resolution, especially in magnetic field. Here, we report magnetic imaging of domain walls in several uniaxial antiferromagnets, the topological insulator MnBi$_2$Te$_4$ family and the Dirac semimetal EuMnBi$_2$, using cryogenic magnetic force microscopy (MFM). Our MFM results reveal higher magnetic susceptibility or net moments inside the domain walls than in domains. Domain walls in these antiferromagnets form randomly with strong thermal and magnetic field dependences. The direct visualization of domain walls and domain structure in magnetic field will not only facilitate the exploration of intrinsic phenomena in topological antiferromagnets, but also open a new path toward control and manipulation of domain walls or spin textures in functional antiferromagnets.