The GaAs/AlGaAs materials system is well suited to multi-bandgap applications such as the multiple quantum well solar cell. GaAs quantum wells are inserted in the undoped AlGaAs active region of a pin structure to extend the absorption range while retaining a higher open circuit voltage than would be provided by a cell made of the well material alone. Unfortunately aluminium gallium arsenide (AlGaAs) suffers from poor transport characteristics due to DX centres and oxygen contamination during growth, which degrade the spectral response. We investigate three mechanisms for improving the spectral response of the MQW solar cell while an experimental study of the open circuit voltage examines the voltage enhancement. An optimised structure for a high efficiency GaAs/AlGaAs solar cell is proposed.
The quantum well solar cell (QWSC) has been proposed as a flexible means to ensuring current matching for tandem cells. This paper explores the further advantage afforded by the indication that QWSCs operate in the radiative limit because radiative contribution to the dark current is seen to dominate in experimental data at biases corresponding to operation under concentration. The dark currents of QWSCs are analysed in terms of a light and dark current model. The model calculates the spectral response (QE) from field bearing regions and charge neutral layers and from the quantum wells by calculating the confined densities of states and absorption coefficient, and solving transport equations analytically. The total dark current is expressed as the sum of depletion layer and charge neutral radiative and non radiative currents consistent with parameter values extracted from QE fits to data. The depletion layer dark current is a sum of Shockley-Read-Hall non radiative, and radiative contributions. The charge neutral region contribution is expressed in terms of the ideal Shockley radiative and non-radiative currents modified to include surface recombination. This analysis shows that the QWSC is inherently subject to the fundamental radiative efficiency limit at high currents where the radiative dark current dominates, whereas good homojunction cells are well described by the ideal Shockley picture where the limit is determined by radiative and non radiative recombination in the charge neutral layers of the cell.
The honeycomb connection of carbon atoms by covalent bonds in a macroscopic two-dimensional scale leads to fascinating graphene and solar cell based on graphene/silicon Schottky diode has been widely studied. For solar cell applications, GaAs is superior to silicon as it has a direct band gap of 1.42 eV and its electron mobility is six times of that of silicon. However, graphene/GaAs solar cell has been rarely explored. Herein, we report graphene/GaAs solar cells with conversion efficiency (Eta) of 10.4% and 15.5% without and with anti-reflection layer on graphene, respectively. The Eta of 15.5% is higher than the state of art efficiency for graphene/Si system (14.5%). Furthermore, our calculation points out Eta of 25.8% can be reached by reasonably optimizing the open circuit voltage, junction ideality factor, resistance of graphene and metal/graphene contact. This research strongly support graphene/GaAs hetero-structure solar cell have great potential for practical applications.
Deposition of perovskite thin films by antisolvent engineering is one of the most common methods employed in perovskite photovoltaics research. Herein, we report on a general method that allows the fabrication of highly efficient perovskite solar cells by any antisolvent via the manipulation of the antisolvent application rate. Through a detailed structural, compositional and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite active layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution. Depending on these two factors, each antisolvent can be utilized to produce high performance devices reaching power conversion efficiencies (PCEs) that exceed 21%. Moreover, we demonstrate that by employing the optimal antisolvent application procedure, highly efficient solar cells can be fabricated from a broad range of precursor stoichiometries, with either a significant excess or deficiency of organic iodides.
An optoelectronic optimization was carried out for an AlGaAs solar cell containing (i) an n-AlGaAs absorber layer with a graded bandgap and (ii) a periodically corrugated Ag backreflector combined with localized ohmic Pd-Ge-Au backcontacts. The bandgap of the absorber layer was varied either sinusoidally or linearly. An efficiency of 33.1% with the 2000-nm-thick n-AlGaAs absorber layer is predicted with linearly graded bandgap along with silver backreflector and localized ohmic backcontacts, in comparison to 27.4% efficiency obtained with homogeneous bandgap and a continuous ohmic backcontact. Sinusoidal grading of the bandgap {is predicted to enhance} the maximum efficiency to 34.5%. Thus, grading the bandgap of the absorber layer, along with a periodically corrugated Ag backreflector and localized ohmic Pd-Ge-Au backcontacts can help realize ultrathin and high-efficient AlGaAs solar cells for terrestrial applications.
We study the dynamics of photo-induced charge carriers in realistic models of LaVO3 and YTiO3 polar heterostructures. It is shown that two types of impact ionization processes contribute to the carrier multiplication in these strongly correlated multi-orbital systems: The first mechanism involves local spin state transitions, while the second mechanism involves the scattering of high kinetic energy carriers. Both processes act on the 10 fs timescale and play an important role in the harvesting of high energy photons in solar cell applications. As a consequence, the optimal gap size for Mott solar cells is substantially smaller than for semiconductor devices.