Do you want to publish a course? Click here

Approximate nonparametric maximum likelihood inference for mixture models via convex optimization

127   0   0.0 ( 0 )
 Added by Long Feng
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Nonparametric maximum likelihood (NPML) for mixture models is a technique for estimating mixing distributions that has a long and rich history in statistics going back to the 1950s, and is closely related to empirical Bayes methods. Historically, NPML-based methods have been considered to be relatively impractical because of computational and theoretical obstacles. However, recent work focusing on approximate NPML methods suggests that these methods may have great promise for a variety of modern applications. Building on this recent work, a class of flexible, scalable, and easy to implement approximate NPML methods is studied for problems with multivariate mixing distributions. Concrete guidance on implementing these methods is provided, with theoretical and empirical support; topics covered include identifying the support set of the mixing distribution, and comparing algorithms (across a variety of metrics) for solving the simple convex optimization problem at the core of the approximate NPML problem. Additionally, three diverse real data applications are studied to illustrate the methods performance: (i) A baseball data analysis (a classical example for empirical Bayes methods), (ii) high-dimensional microarray classification, and (iii) online prediction of blood-glucose density for diabetes patients. Among other things, the empirical results demonstrate the relative effectiveness of using multivariate (as opposed to univariate) mixing distributions for NPML-based approaches.



rate research

Read More

204 - Umberto Picchini 2012
Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to model e.g. financial, neuronal and population growth dynamics. However inference for multidimensional SDE models is still very challenging, both computationally and theoretically. Approximate Bayesian computation (ABC) allow to perform Bayesian inference for models which are sufficiently complex that the likelihood function is either analytically unavailable or computationally prohibitive to evaluate. A computationally efficient ABC-MCMC algorithm is proposed, halving the running time in our simulations. Focus is on the case where the SDE describes latent dynamics in state-space models; however the methodology is not limited to the state-space framework. Simulation studies for a pharmacokinetics/pharmacodynamics model and for stochastic chemical reactions are considered and a MATLAB package implementing our ABC-MCMC algorithm is provided.
A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods are models with intractable likelihoods, and we combine an ABC-MCMC sampler with so-called data cloning for maximum likelihood estimation. Accuracy of ABC methods relies on the use of a small threshold value for comparing simulations from the model and observed data. The proposed methodology shows how to use large threshold values, while the number of data-clones is increased to ease convergence towards an approximate maximum likelihood estimate. We show how to exploit the methodology to reduce the number of iterations of a standard ABC-MCMC algorithm and therefore reduce the computational effort, while obtaining reasonable point estimates. Simulation studies show the good performance of our approach on models with intractable likelihoods such as g-and-k distributions, stochastic differential equations and state-space models.
132 - Amit Meir , Mathias Drton 2017
Applying standard statistical methods after model selection may yield inefficient estimators and hypothesis tests that fail to achieve nominal type-I error rates. The main issue is the fact that the post-selection distribution of the data differs from the original distribution. In particular, the observed data is constrained to lie in a subset of the original sample space that is determined by the selected model. This often makes the post-selection likelihood of the observed data intractable and maximum likelihood inference difficult. In this work, we get around the intractable likelihood by generating noisy unbiased estimates of the post-selection score function and using them in a stochastic ascent algorithm that yields correct post-selection maximum likelihood estimates. We apply the proposed technique to the problem of estimating linear models selected by the lasso. In an asymptotic analysis the resulting estimates are shown to be consistent for the selected parameters and to have a limiting truncated normal distribution. Confidence intervals constructed based on the asymptotic distribution obtain close to nominal coverage rates in all simulation settings considered, and the point estimates are shown to be superior to the lasso estimates when the true model is sparse.
152 - Tin Lok James Ng 2020
The von Mises-Fisher distribution is one of the most widely used probability distributions to describe directional data. Finite mixtures of von Mises-Fisher distributions have found numerous applications. However, the likelihood function for the finite mixture of von Mises-Fisher distributions is unbounded and consequently the maximum likelihood estimation is not well defined. To address the problem of likelihood degeneracy, we consider a penalized maximum likelihood approach whereby a penalty function is incorporated. We prove strong consistency of the resulting estimator. An Expectation-Maximization algorithm for the penalized likelihood function is developed and simulation studies are performed to examine its performance.
We derive Laplace-approximated maximum likelihood estimators (GLAMLEs) of parameters in our Graph Generalized Linear Latent Variable Models. Then, we study the statistical properties of GLAMLEs when the number of nodes $n_V$ and the observed times of a graph denoted by $K$ diverge to infinity. Finally, we display the estimation results in a Monte Carlo simulation considering different numbers of latent variables. Besides, we make a comparison between Laplace and variational approximations for inference of our model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا