Do you want to publish a course? Click here

Approximate maximum likelihood estimation using data-cloning ABC

190   0   0.0 ( 0 )
 Added by Umberto Picchini
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods are models with intractable likelihoods, and we combine an ABC-MCMC sampler with so-called data cloning for maximum likelihood estimation. Accuracy of ABC methods relies on the use of a small threshold value for comparing simulations from the model and observed data. The proposed methodology shows how to use large threshold values, while the number of data-clones is increased to ease convergence towards an approximate maximum likelihood estimate. We show how to exploit the methodology to reduce the number of iterations of a standard ABC-MCMC algorithm and therefore reduce the computational effort, while obtaining reasonable point estimates. Simulation studies show the good performance of our approach on models with intractable likelihoods such as g-and-k distributions, stochastic differential equations and state-space models.



rate research

Read More

Let X_1, ..., X_n be independent and identically distributed random vectors with a log-concave (Lebesgue) density f. We first prove that, with probability one, there exists a unique maximum likelihood estimator of f. The use of this estimator is attractive because, unlike kernel density estimation, the method is fully automatic, with no smoothing parameters to choose. Although the existence proof is non-constructive, we are able to reformulate the issue of computation in terms of a non-differentiable convex optimisation problem, and thus combine techniques of computational geometry with Shors r-algorithm to produce a sequence that converges to the maximum likelihood estimate. For the moderate or large sample sizes in our simulations, the maximum likelihood estimator is shown to provide an improvement in performance compared with kernel-based methods, even when we allow the use of a theoretical, optimal fixed bandwidth for the kernel estimator that would not be available in practice. We also present a real data clustering example, which shows that our methodology can be used in conjunction with the Expectation--Maximisation (EM) algorithm to fit finite mixtures of log-concave densities. An R version of the algorithm is available in the package LogConcDEAD -- Log-Concave Density Estimation in Arbitrary Dimensions.
We derive Laplace-approximated maximum likelihood estimators (GLAMLEs) of parameters in our Graph Generalized Linear Latent Variable Models. Then, we study the statistical properties of GLAMLEs when the number of nodes $n_V$ and the observed times of a graph denoted by $K$ diverge to infinity. Finally, we display the estimation results in a Monte Carlo simulation considering different numbers of latent variables. Besides, we make a comparison between Laplace and variational approximations for inference of our model.
Over the past years, many applications aim to assess the causal effect of treatments assigned at the community level, while data are still collected at the individual level among individuals of the community. In many cases, one wants to evaluate the effect of a stochastic intervention on the community, where all communities in the target population receive probabilistically assigned treatments based on a known specified mechanism (e.g., implementing a community-level intervention policy that target stochastic changes in the behavior of a target population of communities). The tmleCommunity package is recently developed to implement targeted minimum loss-based estimation (TMLE) of the effect of community-level intervention(s) at a single time point on an individual-based outcome of interest, including the average causal effect. Implementations of the inverse-probability-of-treatment-weighting (IPTW) and the G-computation formula (GCOMP) are also available. The package supports multivariate arbitrary (i.e., static, dynamic or stochastic) interventions with a binary or continuous outcome. Besides, it allows user-specified data-adaptive machine learning algorithms through SuperLearner, sl3 and h2oEnsemble packages. The usage of the tmleCommunity package, along with a few examples, will be described in this paper.
Statistical models with latent structure have a history going back to the 1950s and have seen widespread use in the social sciences and, more recently, in computational biology and in machine learning. Here we study the basic latent class model proposed originally by the sociologist Paul F. Lazarfeld for categorical variables, and we explain its geometric structure. We draw parallels between the statistical and geometric properties of latent class models and we illustrate geometrically the causes of many problems associated with maximum likelihood estimation and related statistical inference. In particular, we focus on issues of non-identifiability and determination of the model dimension, of maximization of the likelihood function and on the effect of symmetric data. We illustrate these phenomena with a variety of synthetic and real-life tables, of different dimension and complexity. Much of the motivation for this work stems from the 100 Swiss Francs problem, which we introduce and describe in detail.
Nonparametric empirical Bayes methods provide a flexible and attractive approach to high-dimensional data analysis. One particularly elegant empirical Bayes methodology, involving the Kiefer-Wolfowitz nonparametric maximum likelihood estimator (NPMLE) for mixture models, has been known for decades. However, implementation and theoretical analysis of the Kiefer-Wolfowitz NPMLE are notoriously difficult. A fast algorithm was recently proposed that makes NPMLE-based procedures feasible for use in large-scale problems, but the algorithm calculates only an approximation to the NPMLE. In this paper we make two contributions. First, we provide upper bounds on the convergence rate of the approximate NPMLEs statistical error, which have the same order as the best known bounds for the true NPMLE. This suggests that the approximate NPMLE is just as effective as the true NPMLE for statistical applications. Second, we illustrate the promise of NPMLE procedures in a high-dimensional binary classification problem. We propose a new procedure and show that it vastly outperforms existing methods in experiments with simulated data. In real data analyses involving cancer survival and gene expression data, we show that it is very competitive with several recently proposed methods for regularized linear discriminant analysis, another popular approach to high-dimensional classification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا