Do you want to publish a course? Click here

A Novel Fault Classification Scheme Based on Least Square SVM

92   0   0.0 ( 0 )
 Added by Harishchandra Dubey
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

This paper presents a novel approach for fault classification and section identification in a series compensated transmission line based on least square support vector machine. The current signal corresponding to one-fourth of the post fault cycle is used as input to proposed modular LS-SVM classifier. The proposed scheme uses four binary classifier; three for selection of three phases and fourth for ground detection. The proposed classification scheme is found to be accurate and reliable in presence of noise as well. The simulation results validate the efficacy of proposed scheme for accurate classification of fault in a series compensated transmission line.



rate research

Read More

109 - Hao Zhang , Fuhui Zhou , Qihui Wu 2021
Automatic modulation classification enables intelligent communications and it is of crucial importance in todays and future wireless communication networks. Although many automatic modulation classification schemes have been proposed, they cannot tackle the intra-class diversity problem caused by the dynamic changes of the wireless communication environment. In order to overcome this problem, inspired by face recognition, a novel automatic modulation classification scheme is proposed by using the multi-scale network in this paper. Moreover, a novel loss function that combines the center loss and the cross entropy loss is exploited to learn both discriminative and separable features in order to further improve the classification performance. Extensive simulation results demonstrate that our proposed automatic modulation classification scheme can achieve better performance than the benchmark schemes in terms of the classification accuracy. The influence of the network parameters and the loss function with the two-stage training strategy on the classification accuracy of our proposed scheme are investigated.
Data-driven fault classification is complicated by imbalanced training data and unknown fault classes. Fault diagnosis of dynamic systems is done by detecting changes in time-series data, for example residuals, caused by faults or system degradation. Different fault classes can result in similar residual outputs, especially for small faults which can be difficult to distinguish from nominal system operation. Analyzing how easy it is to distinguish data from different fault classes is crucial during the design process of a diagnosis system to evaluate if classification performance requirements can be met. Here, a data-driven model of different fault classes is used based on the Kullback-Leibler divergence. This is used to develop a framework for quantitative fault diagnosis performance analysis and open set fault classification. A data-driven fault classification algorithm is proposed which can handle unknown faults and also estimate the fault size using training data from known fault scenarios. To illustrate the usefulness of the proposed methods, data have been collected from an engine test bench to illustrate the design process of a data-driven diagnosis system, including quantitative fault diagnosis analysis and evaluation of the developed open set fault classification algorithm.
Understanding the bottlenecks in implementing stochastic gradient descent (SGD)-based distributed support vector machines (SVM) algorithm is important in training larger data sets. The communication time to do the model synchronization across the parallel processes is the main bottleneck that causes inefficiency in the training process. The model synchronization is directly affected by the mini-batch size of data processed before the global synchronization. In producing an efficient distributed model, the communication time in training model synchronization has to be as minimum as possible while retaining a high testing accuracy. The effect from model synchronization frequency over the convergence of the algorithm and accuracy of the generated model must be well understood to design an efficient distributed model. In this research, we identify the bottlenecks in model synchronization in parallel stochastic gradient descent (PSGD)-based SVM algorithm with respect to the training model synchronization frequency (MSF). Our research shows that by optimizing the MSF in the data sets that we used, a reduction of 98% in communication time can be gained (16x - 24x speed up) with respect to high-frequency model synchronization. The training model optimization discussed in this paper guarantees a higher accuracy than the sequential algorithm along with faster convergence.
This work demonstrates a hardware-efficient support vector machine (SVM) training algorithm via the alternative direction method of multipliers (ADMM) optimizer. Low-rank approximation is exploited to reduce the dimension of the kernel matrix by employing the Nystr{o}m method. Verified in four datasets, the proposed ADMM-based training algorithm with rank approximation reduces 32$times$ of matrix dimension with only 2% drop in inference accuracy. Compared to the conventional sequential minimal optimization (SMO) algorithm, the ADMM-based training algorithm is able to achieve a 9.8$times$10$^7$ shorter latency for training 2048 samples. Hardware design techniques, including pre-computation and memory sharing, are proposed to reduce the computational complexity by 62% and the memory usage by 60%. As a proof of concept, an epileptic seizure detector chip is designed to demonstrate the effectiveness of the proposed hardware-efficient training algorithm. The chip achieves a 153,310$times$ higher energy efficiency and a 364$times$ higher throughput-to-area ratio for SVM training than a high-end CPU. This work provides a promising solution for edge devices which require low-power and real-time training.
Recently, Adaboost has been widely used to improve the accuracy of any given learning algorithm. In this paper we focus on designing an algorithm to employ combination of Adaboost with Support Vector Machine as weak component classifiers to be used in Face Detection Task. To obtain a set of effective SVM-weaklearner Classifier, this algorithm adaptively adjusts the kernel parameter in SVM instead of using a fixed one. Proposed combination outperforms in generalization in comparison with SVM on imbalanced classification problem. The proposed here method is compared, in terms of classification accuracy, to other commonly used Adaboost methods, such as Decision Trees and Neural Networks, on CMU+MIT face database. Results indicate that the performance of the proposed method is overall superior to previous Adaboost approaches.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا