No Arabic abstract
Complementary media (CM) interacting with arbitrarily situated obstacles are usually less discussed. In this paper, an analytical framework based on multiple scattering theory is established for analyzing such a mismatched case. As examples, CM-based devices, i.e., a superlens and superscatterer, are discussed. From an analysis, the cancellation mechanism of the mismatched CM is studied. In addition, numerical results are provided for illustration. Moreover, further study shows that such cancellation effects might rely on specific conditions. Actually, the conclusions are not restricted to any specific frequencies; they could be extended to many other areas including applications to active cloaking, antennas, and wireless power transfer.
Almost a hundred years ago, two different expressions were proposed for the energy--momentum tensor of an electromagnetic wave in a dielectric. Minkowskis tensor predicted an increase in the linear momentum of the wave on entering a dielectric medium, whereas Abrahams tensor predicted its decrease. Theoretical arguments were advanced in favour of both sides, and experiments proved incapable of distinguishing between the two. Yet more forms were proposed, each with their advocates who considered the form that they were proposing to be the one true tensor. This paper reviews the debate and its eventual conclusion: that no electromagnetic wave energy--momentum tensor is complete on its own. When the appropriate accompanying energy--momentum tensor for the material medium is also considered, experimental predictions of all the various proposed tensors will always be the same, and the preferred form is therefore effectively a matter of personal choice.
An analytical representation for the spatial and temporal dynamics of the simplest of the diffusions -- Bronwian diffusion in an homogeneous slab geometry, with radial symmetry -- is presented. This representation is useful since it describes the time-resolved (as well as stationary) radial profiles, for point-like external excitation, which are more important in practical experimental situations than the case of plane-wave external excitation. The analytical representation can be used, under linear system response conditions, to obtain the full dynamics for any spatial and temporal profiles of initial perturbation of the system. Its main value is the quantitative accounting of absorption in the spatial distributions. This can contribute to obtain unambiguous conclusions in reports of Anderson localization of classical waves in three dimensions.
In the experiments on stress-induced phase transitions in SMA strips, several interesting instability phenomena have been observed, including a necking-type instability, a shear-type instability and an orientation instability. By using the smallness of the maximum strain, the thickness and width of the strip, we use a methodology, which combines series expansions and asymptotic expansions, to derive the asymptotic normal form equations, which can yield the leading-order behavior of the original three-dimensional field equations. Our analytical results reveal that the inclination of the phase front is a phenomenon of localization-induced buckling (or phase-transition-induced buckling as the localization is caused by the phase transition). Due to the similarities between the development of the Luders band in a mild steel and the stress-induced transformations in a SMA, the present results give a strong analytical evidence that the former is also caused by macroscopic effects instead of microscopic effects. Our analytical results also reveal more explicitly the important roles played by the geometrical parameters.
In the context of analog gravity the Hawking effect can be generalized to domains outside astrophysics. Arguably, the most successful systems for this analogy have been so far the sonic and the optical ones. However, problems arise in the analog systems as their dispersive effects are too large to be ignored, and this in turn modifies the usual thermal spectrum of Hawking radiation. In this work we perform analytical and numerical studies on how the velocity profile modifies the Hawking temperature in dispersive media, including some with direct experimental application.
In this paper propagation properties of a parallel-plate waveguide with tunable artificial impedance surfaces as sidewalls are studied both analytically and numerically. The impedance surfaces comprise an array of patches over a dielectric slab with embedded metallic vias. The tunability of surfaces is achieved with varactors. Simple design equations for tunable artificial impedance surfaces as well as dispersion equations for the TE and TM modes are presented. The propagation properties are studied in three different regimes: a multi-mode waveguide, a single-mode waveguide, and below-cutoff waveguide. The analytical results are verified with numerical simulations.