No Arabic abstract
An analytical representation for the spatial and temporal dynamics of the simplest of the diffusions -- Bronwian diffusion in an homogeneous slab geometry, with radial symmetry -- is presented. This representation is useful since it describes the time-resolved (as well as stationary) radial profiles, for point-like external excitation, which are more important in practical experimental situations than the case of plane-wave external excitation. The analytical representation can be used, under linear system response conditions, to obtain the full dynamics for any spatial and temporal profiles of initial perturbation of the system. Its main value is the quantitative accounting of absorption in the spatial distributions. This can contribute to obtain unambiguous conclusions in reports of Anderson localization of classical waves in three dimensions.
A proof is given of the vector identity proposed by Gubarev, Stodolsky and Zakarov that relates the volume integral of the square of a 3-vector field to non-local integrals of the curl and divergence of the field. The identity is applied to the case of the magnetic vector potential and magnetic field of a rotating charged shell. The latter provides a straightforward exercise in the use of the addition theorem of spherical harmonics.
Complementary media (CM) interacting with arbitrarily situated obstacles are usually less discussed. In this paper, an analytical framework based on multiple scattering theory is established for analyzing such a mismatched case. As examples, CM-based devices, i.e., a superlens and superscatterer, are discussed. From an analysis, the cancellation mechanism of the mismatched CM is studied. In addition, numerical results are provided for illustration. Moreover, further study shows that such cancellation effects might rely on specific conditions. Actually, the conclusions are not restricted to any specific frequencies; they could be extended to many other areas including applications to active cloaking, antennas, and wireless power transfer.
A uniformly-charged spherical shell of radius $R$, mass $m$, and total electrical charge $q$, having an oscillatory angular velocity $Omega(t)$ around a fixed axis, is a model for a magnetic dipole that radiates an electromagnetic field into its surrounding free space at a fixed oscillation frequency $omega$. An exact solution of the Maxwell-Lorentz equations of classical electrodynamics yields the self-torque of radiation resistance acting on the spherical shell as a function of $R$, $q$, and $omega$. Invoking the Newtonian equation of motion for the shell, we relate its angular velocity $Omega(t)$ to an externally applied torque, and proceed to examine the response of the magnetic dipole to an impulsive torque applied at a given instant of time, say, $t=0$. The impulse response of the dipole is found to be causal down to extremely small values of $R$ (i.e., as $R to 0$) so long as the exact expression of the self-torque is used in the dynamical equation of motion of the spherical shell.
Recently, it was shown that surface electromagnetic waves at interfaces between continuous homogeneous media (e.g., surface plasmon-polaritons at metal-dielectric interfaces) have a topological origin [K. Y. Bliokh et al., Nat. Commun. 10, 580 (2019)]. This is explained by the nontrivial topology of the non-Hermitian photon helicity operator in the Weyl-like representation of Maxwell equations. Here we analyze another type of classical waves: longitudinal acoustic waves corresponding to spinless phonons. We show that surface acoustic waves, which appear at interfaces between media with opposite-sign densities, can be explained by similar topological features and the bulk-boundary correspondence. However, in contrast to photons, the topological properties of sound waves originate from the non-Hermitian four-momentum operator in the Klein-Gordon representation of acoustic fields.
Interferometric position detection of levitated particles is crucial for the centre-of-mass (CM) motion cooling and manipulation of levitated particles. In combination with balanced detection and feedback cooling, this system has provided picometer scale position sensitivity, zeptonewton force detection, and sub-millikelvin CM temperatures. In this article, we develop an analytical model of this detection system and compare its performance with experimental results allowing us to explain the presence of spurious frequencies in the spectra.