Do you want to publish a course? Click here

Strain Control of Fermiology and Many-Body Interactions in Two-Dimensional Ruthenates

82   0   0.0 ( 0 )
 Added by Bulat Burganov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we demonstrate how the Fermi surface topology and quantum many-body interactions can be manipulated via epitaxial strain in the spin-triplet superconductor Sr$_2$RuO$_4$ and its isoelectronic counterpart Ba$_2$RuO$_4$ using oxide molecular beam epitaxy (MBE), emph{in situ} angle-resolved photoemission spectroscopy (ARPES), and transport measurements. Near the topological transition of the $gamma$ Fermi surface sheet, we observe clear signatures of critical fluctuations, while the quasiparticle mass enhancement is found to increase rapidly and monotonically with increasing Ru-O bond distance. Our work demonstrates the possibilities for using epitaxial strain as a disorder-free means of manipulating emergent properties, many-body interactions, and potentially the superconductivity in correlated materials.



rate research

Read More

Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetotransport measurements. We find that the resistivity response to the strain is strongly temperature dependent and it correlates with the sign change in the Hall coefficient being driven by scattering, coupling with the lattice and multiband phenomena. Band structure calculations suggest that under strain the electron pockets develop a large in-plane anisotropy as compared with the hole pocket. Magnetotransport studies at low temperatures indicate that the mobility of the dominant carriers increases with tensile strain. Close to the critical temperature, all resistivity curves at constant strain cross in a single point, indicating a universal critical exponent linked to a strain-induced phase transition. Our results indicate that the superconducting state is enhanced under compressive strain and suppressed under tensile strain, in agreement with the trends observed in FeSe thin films and overdoped pnictides, whereas the nematic phase seems to be affected in the opposite way by the uniaxial strain. By comparing the enhanced superconductivity under strain of different systems, our results suggest that strain on its own cannot account for the enhanced high $T_c$ superconductivity of FeSe systems.
Magnetism in recently discovered van der Waals materials has opened new avenues in the study of fundamental spin interactions in truly two-dimensions. A paramount question is what effect higher-order interactions beyond bilinear Heisenberg exchange have on the magnetic properties of few-atom thick compounds. Here we demonstrate that biquadratic exchange interactions, which is the simplest and most natural form of non-Heisenberg coupling, assume a key role in the magnetic properties of layered magnets. Using a combination of nonperturbative analytical techniques, non-collinear first-principles methods and classical Monte Carlo calculations that incorporate higher-order exchange, we show that several quantities including magnetic anisotropies, spin-wave gaps and topological spin-excitations are intrinsically renormalized leading to further thermal stability of the layers. We develop a spin Hamiltonian that also contains antisymmetric exchanges (e.g. Dzyaloshinskii-Moriya interactions) to successfully rationalize numerous observations currently under debate, such as the non-Ising character of several compounds despite a strong magnetic anisotropy, peculiarities of the magnon spectrum of 2D magnets, and the discrepancy between measured and calculated Curie temperatures. Our results lay the foundation of a universal higher-order exchange theory for novel 2D magnetic design strategies.
We study the properties of $s$-wave superconductivity induced around a nematic quantum critical point in two-dimensional metals. The strong Landau damping and the Cooper pairing between incoherent fermions have dramatic mutual influence on each other, and hence should be treated on an equal footing. This problem is addressed by analyzing the self-consistent Dyson-Schwinger equations for the superconducting gap and Landau damping rate. We solve the equations at zero temperature without making any linearization, and show that the superconducting gap is maximized at the quantum critical point and decreases rapidly as the system departs from this point. The interplay between nematic fluctuation and an additional pairing interaction, caused by phonon or other boson mode, is also investigated. The total superconducting gap generated by such interplay can be several times larger than the direct sum of the gaps separately induced by these two pairing interactions. This provides a promising way to achieve remarkable enhancement of superconductivity.
Nematic states are characterized by rotational symmetry breaking without translational ordering. Recently, nematic superconductivity, in which the superconducting gap spontaneously lifts the rotational symmetry of the lattice, has been discovered. However the pairing mechanism and the mechanism determining the nematic orientation remain unresolved. A first step is to demonstrate control of the nematicity, through application of an external symmetry-breaking field, to determine the sign and strength of coupling to the lattice. Here, we report for the first time control of the nematic orientation of the superconductivity of Sr$_x$Bi$_2$Se$_3$, through externally-applied uniaxial stress. The suppression of subdomains indicates that it is the $Delta_{4y}$ state that is most favoured under compression along the basal Bi-Bi bonds. These results provide an inevitable step towards understanding the microscopic origin of the unique topological nematic superconductivity.
In this Rapid Communication, a set of $^{209}$Bi-nuclear magnetic resonance (NMR)/nuclear quadrupole resonance (NQR) measurements has been performed to investigate the physical properties of superconducting (SC) BaTi$_2$Bi$_2$O from a microscopic point of view. The NMR and NQR spectra at 5~K can be reproduced with a non-zero in-plane anisotropic parameter $eta$, indicating the breaking of the in-plane four-fold symmetry at the Bi site without any magnetic order, i.e., `the electronic nematic state. In the SC state, the nuclear spin-lattice relaxation rate divided by temperature, $1/T_1T$, does not change even below $T_{rm c}$, while a clear SC transition was observed with a diamagnetic signal. This observation can be attributed to the strong two-dimensionality in BaTi$_2$Bi$_2$O. Comparing the NMR/NQR results among BaTi$_2$$Pn$$_2$O ($Pn$ = As, Sb, and Bi), it was found that the normal and SC properties of BaTi$_2$Bi$_2$O were considerably different from those of BaTi$_2$Sb$_2$O and BaTi$_2$As$_2$O, which might explain the two-dome structure of $T_{rm c}$ in this system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا