Do you want to publish a course? Click here

Nematic transition and highly two-dimensional superconductivity in BaTi$_2$Bi$_2$O revealed by $^{209}$Bi-nuclear magnetic resonance/nuclear quadrupole resonance measurements

70   0   0.0 ( 0 )
 Added by Shunsaku Kitagawa
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this Rapid Communication, a set of $^{209}$Bi-nuclear magnetic resonance (NMR)/nuclear quadrupole resonance (NQR) measurements has been performed to investigate the physical properties of superconducting (SC) BaTi$_2$Bi$_2$O from a microscopic point of view. The NMR and NQR spectra at 5~K can be reproduced with a non-zero in-plane anisotropic parameter $eta$, indicating the breaking of the in-plane four-fold symmetry at the Bi site without any magnetic order, i.e., `the electronic nematic state. In the SC state, the nuclear spin-lattice relaxation rate divided by temperature, $1/T_1T$, does not change even below $T_{rm c}$, while a clear SC transition was observed with a diamagnetic signal. This observation can be attributed to the strong two-dimensionality in BaTi$_2$Bi$_2$O. Comparing the NMR/NQR results among BaTi$_2$$Pn$$_2$O ($Pn$ = As, Sb, and Bi), it was found that the normal and SC properties of BaTi$_2$Bi$_2$O were considerably different from those of BaTi$_2$Sb$_2$O and BaTi$_2$As$_2$O, which might explain the two-dome structure of $T_{rm c}$ in this system.

rate research

Read More

We report the $^{121/123}$Sb-NMR/nuclear quadrupole resonance (NQR) measurements on the newly-discovered superconductor BaTi$_2$Sb$_2$O with a two-dimensional Ti$_2$O square-net layer formed with Ti$^{3+}$ (3$d^1$). NQR measurements revealed that the in-plane four-fold symmetry is broken at the Sb site below $T_{rm A} sim$ 40 K, without an internal field appearing at the Sb site. These exclude a spin-density wave (SDW)/ charge density wave (CDW) ordering with incommensurate correlations, but can be understood with the commensurate CDW ordering at $T_{rm A}$. The spin-lattice relaxation rate $1/T_1$, measured at the four-fold symmetry breaking site, decreases below superconducting (SC) transition temperature $T_{rm c}$, indicative of the microscopic coexistence of superconductivity and the CDW/SDW phase below $T_{rm A}$. Furthermore, $1/T_1$ of $^{121}$Sb-NQR shows a coherence peak just below $T_{rm c}$ and decreases exponentially at low temperatures. These results are in sharp contrast with those in cuprate and iron-based superconductors, and strongly suggest that its SC symmetry is classified to an ordinary s-wave state.
We have performed $^{63}$Cu nuclear magnetic resonance/nuclear quadrupole resonance measurements to investigate the magnetic and superconducting (SC) properties on a superconductivity dominant ($S$-type) single crystal of CeCu$_2$Si$_2$. Although the development of antiferromagnetic (AFM) fluctuations down to 1~K indicated that the AFM criticality was close, Korringa behavior was observed below 0.8~K, and no magnetic anomaly was observed above $T_{rm c} sim$ 0.6 K. These behaviors were expected in $S$-type CeCu$_2$Si$_2$. The temperature dependence of the nuclear spin-lattice relaxation rate $1/T_1$ at zero field was almost identical to that in the previous polycrystalline samples down to 130~mK, but the temperature dependence deviated downward below 120~mK. In fact, $1/T_1$ in the SC state could be fitted with the two-gap $s_{pm}$-wave rather than the two-gap $s_{++}$-wave model down to 90~mK. Under magnetic fields, the spin susceptibility in both directions clearly decreased below $T_{rm c}$, indicative of the formation of spin singlet pairing. The residual part of the spin susceptibility was understood by the field-induced residual density of states evaluated from $1/T_1T$, which was ascribed to the effect of the vortex cores. No magnetic anomaly was observed above the upper critical field $H_{c2}$, but the development of AFM fluctuations was observed, indicating that superconductivity was realized in strong AFM fluctuations.
We report $^{75}$As nuclear quadrupole resonance (NQR) studies on superconducting oxypnictide LaFeAsO$_{0.92}$F$_{0.08}$ ($T_{rm c}$ = 23 K). The temperature dependence of the spin lattice relaxation rate (1/$T_1$) decreases below $T_{rm c}$ without a coherence (Hebel-Slichter) peak and shows a temperature dependence that is not simple power-law nor exponential. We show that the result can be understood in terms of two superconducting gaps of either $d$- or ${pm}s$-wave symmetry, with the larger gap $Delta_1sim 4 k_{rm B}T_{rm c}$ and the smaller one $Delta_2 sim 1.5 k_{rm B}T_{rm c}$. Our result suggests that the multiple-gaps feature is universal in the oxypnictides superconductors, which is probably associated with the multiple electronic bands structure in this new class of materials. We also find that 1/$T_1T$ above $T_{rm c}$ increases with decreasing temperature, which suggests weak magnetic fluctuations in the normal state.
Unconventional superconductivity is characterized by the spontaneous symmetry breaking of the macroscopic superconducting wavefunction in addition to the gauge symmetry breaking, such as rotational-symmetry breaking with respect to the underlying crystal-lattice symmetry. Particularly, superconductivity with spontaneous rotational-symmetry breaking in the wavefunction amplitude and thus in bulk properties, not yet reported previously, is intriguing and can be termed nematic superconductivity in analogy to nematic liquid-crystal phases. Here, based on specific-heat measurements of the single-crystalline Cu$_x$Bi$_2$Se$_3$ under accurate magnetic-field-direction control, we report thermodynamic evidence for nematic superconductivity, namely, clear two-fold-symmetric behavior in a trigonal lattice. The results indicate realization of an odd-parity nematic state, feasible only by macroscopic quantum condensates and distinct from nematic states in liquid crystals. The results also confirm topologically non-trivial superconductivity in Cu$_x$Bi$_2$Se$_3$.
69 - R. Guehne 2020
Nuclear magnetic resonance (NMR) was recently shown to measure the bulk band inversion of Bi$_2$Se$_3$ through changes in the $^{209}$Bi nuclear quadrupole interaction, and the corresponding tensor of the local electric field gradient was found to follow, surprisingly, the direction of the external magnetic field if the sample is rotated. This manifests a hidden property of the charge carriers in the bulk of this topological insulator, which is explored here with another material, Bi$_2$Te$_3$. It is found that two electric field gradients appear to be present at $^{209}$Bi, one rests with the lattice, as usual, while a second follows the external field if it is rotated with respect to the crystal axes. These electronic degrees of freedom correspond to an effective rotation of $j$-electrons, and their level life time is believed to be responsible for a new quadrupolar relaxation that should lead to other special properties including the electronic specific heat.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا