Do you want to publish a course? Click here

Revealing the dark side of a bright exciton polariton condensate

101   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Condensation of bosons causes spectacular phenomena such as superfluidity or superconductivity. Understanding the nature of the condensed particles is crucial for active control of such quantum phases. Fascinating possibilities emerge from condensates of light-matter coupled excitations, such as exciton polaritons, photons hybridized with hydrogen-like bound electron-hole pairs. So far, only the photon component has been resolved, while even the mere existence of excitons in the condensed regime has been challenged. Here we trace the matter component of polariton condensates by monitoring intra-excitonic terahertz transitions. We study how a reservoir of optically dark excitons forms and feeds the degenerate state. Unlike atomic gases, the atom-like transition in excitons is dramatically renormalized upon macroscopic ground state population. Our results establish fundamental differences between polariton condensation and photon lasing and open possibilities for coherent control of condensates.



rate research

Read More

Polaritons are quasiparticles arising from the strong coupling of electromagnetic waves in cavities and dipolar oscillations in a material medium. In this framework, localized surface plasmon in metallic nanoparticles defining optical nanocavities have attracted increasing interests in the last decade. This interest results from their sub-diffraction mode volume, which offers access to extremely high photonic densities by exploiting strong scattering cross-sections. However, high absorption losses in metals have hindered the observation of collective coherent phenomena, such as condensation. In this work we demonstrate the formation of a non-equilibrium room temperature plasmon-exciton-polariton condensate with a long range spatial coherence, extending a hundred of microns, well over the excitation area, by coupling Frenkel excitons in organic molecules to a multipolar mode in a lattice of plasmonic nanoparticles. Time-resolved experiments evidence the picosecond dynamics of the condensate and a sizeable blueshift, thus measuring for the first time the effect of polariton interactions in plasmonic cavities. Our results pave the way to the observation of room temperature superfluidity and novel nonlinear phenomena in plasmonic systems, challenging the common belief that absorption losses in metals prevent the realization of macroscopic quantum states.
We consider a bilayer system of two-dimensional Bose-Einstein-condensed dipolar dark excitons (upper layer) and bright ones (bottom layer). We demonstrate that the interlayer interaction leads to a mixing between excitations from different layers. This mixing leads to the appearance of a second spectral branch in the spectrum of bright condensate. The excitation spectrum of the condensate of dark dipolar excitons then becomes optically accessible during luminescence spectra measurements of the bright condensate, which allows one to probe its kinetic properties. This approach is relevant for experimental setups, where detection via conventional techniques remains challenging; in particular, the suggested method is useful for studying dark dipolar excitons in transition metal dichalcogenide monolayers.
157 - Wei Bao , Xiaoze Liu , Fei Xue 2018
The condensation of half-light half-matter exciton polaritons in semiconductor optical cavities is a striking example of macroscopic quantum coherence in a solid state platform. Quantum coherence is possible only when there are strong interactions between the exciton polaritons provided by their excitonic constituents. Rydberg excitons with high principle value exhibit strong dipole-dipole interactions in cold atoms. However, polaritons with the excitonic constituent that is an excited state, namely Rydberg exciton polaritons (REPs), have not yet been experimentally observed. Here, for the first time, we observe the formation of REPs in a single crystal CsPbBr3 perovskite cavity without any external fields. These polaritons exhibit strong nonlinear behavior that leads to a coherent polariton condensate with a prominent blue shift. Furthermore, the REPs in CsPbBr3 are highly anisotropic and have a large extinction ratio, arising from the perovskites orthorhombic crystal structure. Our observation not only sheds light on the importance of many-body physics in coherent polariton systems involving higher-order excited states, but also paves the way for exploring these coherent interactions for solid state quantum optical information processing.
Interacting Bosons, loaded in artificial lattices, have emerged as a modern platform to explore collective manybody phenomena, quantum phase transitions and exotic phases of matter as well as to enable advanced on chip simulators. Such experiments strongly rely on well-defined shaping the potential landscape of the Bosons, respectively Bosonic quasi-particles, and have been restricted to cryogenic, or even ultra-cold temperatures. On chip, the GaAs-based exciton-polariton platform emerged as a promising system to implement and study bosonic non-linear systems in lattices, yet demanding cryogenic temperatures. In our work, we discuss the first experiment conducted on a polaritonic lattice at ambient conditions: We utilize fluorescent proteins as an excitonic gain material, providing ultra-stable Frenkel excitons. We directly take advantage of their soft nature by mechanically shaping them in the photonic one-dimensional lattice. We demonstrate controlled loading of the condensate in distinct orbital lattice modes of different symmetries, and finally explore, as an illustrative example, the formation of a gap solitonic mode, driven by the interplay of effective interaction and negative effective mass in our lattice. The observed phenomena in our open dissipative system are comprehensively scrutinized by a nonequilibrium model of polariton condensation. We believe, that this work is establishing the organic polariton platform as a serious contender to the well-established GaAs platform for a wide range of applications relying on coherent Bosons in lattices, given its unprecedented flexibility, cost effectiveness and operation temperature.
326 - Jinwu Ye , T. Shi , Longhua Jiang 2009
Superfluid has been realized in Helium-4, Helium-3 and ultra-cold atoms. It has been widely used in making high-precision devices and also in cooling various systems. There have been extensive experimental search for possible exciton superfluid (ESF) in semiconductor electron-hole bilayer (EHBL) systems below liquid Helium temperature. However, exciton superfluid are meta-stable and will eventually decay through emitting photons. Here we study quantum nature of photons emitted from the excitonic superfluid (ESF) phase in the semiconductor EHBL and find that the light emitted from the excitonic superfluid has unique and unusual features not shared by any other atomic or condensed matter systems. We show that the emitted photons along the direction perpendicular to the layer are in a coherent state, those along all tilted directions are in a two modes squeezed state. We determine the two mode squeezing spectra, the angle resolved power spectrum, the line shapes of both the momentum distribution curve (MDC) and the energy distribution curve (EDC). From the two photon correlation functions, we find there are photon bunching, the photo-count statistics is super-Poissonian. We discuss how several important parameters such as the chemical potential, the exciton decay rate, the quasiparticle energy spectrum and the dipole-dipole interaction strength between the excitons in our theory can be extracted from the experimental data and comment on available experimental data on both EDC and MDC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا